《2017-2018版高中數(shù)學(xué) 第三章 圓錐曲線與方程章末復(fù)習(xí)課學(xué)案 北師大版選修2-1》由會(huì)員分享,可在線閱讀,更多相關(guān)《2017-2018版高中數(shù)學(xué) 第三章 圓錐曲線與方程章末復(fù)習(xí)課學(xué)案 北師大版選修2-1(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
第三章 圓錐曲線與方程
學(xué)習(xí)目標(biāo) 1.理解曲線方程的概念,掌握求曲線方程的常用方法.2.掌握橢圓、雙曲線、拋物線的定義及其應(yīng)用,會(huì)用定義法求標(biāo)準(zhǔn)方程.3.掌握橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程及其求法.4.掌握橢圓、雙曲線、拋物線的簡(jiǎn)單性質(zhì),會(huì)利用簡(jiǎn)單性質(zhì)解決相關(guān)問題.5.掌握簡(jiǎn)單的直線與圓錐曲線位置關(guān)系問題的解決方法.
知識(shí)點(diǎn)一 三種圓錐曲線的定義、標(biāo)準(zhǔn)方程、簡(jiǎn)單性質(zhì)
橢圓
雙曲線
拋物線
定義
平面內(nèi)到兩個(gè)定點(diǎn)F1,F(xiàn)2距離之和等于常數(shù)(大于|F1F2|)的點(diǎn)的集合
平面內(nèi)到兩定點(diǎn)F1,F(xiàn)2的距離之差的絕對(duì)值等于常數(shù)(大于零且小于|F1F2|)的點(diǎn)的集合
平面內(nèi)與
2、一個(gè)定點(diǎn)F和一條定直線l(l不過F)的距離相等的點(diǎn)的集合
標(biāo)準(zhǔn)方程
+=1(a>b>0)
-=1(a>0,b>0)
y2=2px(p>0)
關(guān)系式
a2-b2=c2
a2+b2=c2
圖形
封閉圖形
無限延展,有漸近線
無限延展,沒有漸近線
對(duì)稱性
對(duì)稱中心為原點(diǎn)
無對(duì)稱中心
兩條對(duì)稱軸
一條對(duì)稱軸
頂點(diǎn)
四個(gè)
兩個(gè)
一個(gè)
離心率
01
e=1
準(zhǔn)線方程
x=-
決定形狀的因素
e決定扁平程度
e決定開口大小
2p決定開口大小
知識(shí)點(diǎn)二 待定系數(shù)法求圓錐曲線標(biāo)準(zhǔn)方程
1.橢圓、雙曲線的標(biāo)準(zhǔn)方程
求橢
3、圓、雙曲線的標(biāo)準(zhǔn)方程包括“定位”和“定量”兩方面,一般先確定焦點(diǎn)的位置,再確定參數(shù).當(dāng)焦點(diǎn)位置不確定時(shí),要分情況討論.也可將橢圓方程設(shè)為Ax2+By2=1(A>0,B>0,A≠B),其中當(dāng)>時(shí),焦點(diǎn)在x軸上,當(dāng)<時(shí),焦點(diǎn)在y軸上;雙曲線方程可設(shè)為Ax2+By2=1(AB<0),當(dāng)<0時(shí),焦點(diǎn)在y軸上,當(dāng)<0時(shí),焦點(diǎn)在x軸上.
另外,與已知雙曲線-=1(a>0,b>0)共漸近線的雙曲線方程可設(shè)為-=λ(λ≠0);已知所求雙曲線為等軸雙曲線,其方程可設(shè)為x2-y2=λ(λ≠0).
2.拋物線的標(biāo)準(zhǔn)方程
求拋物線的標(biāo)準(zhǔn)方程時(shí),先確定拋物線的方程類型,再由條件求出參數(shù)p的大小.當(dāng)焦點(diǎn)位置不確定時(shí)
4、,要分情況討論,也可將方程設(shè)為y2=2px(p≠0)或x2=2py(p≠0),然后建立方程求出參數(shù)p的值.
知識(shí)點(diǎn)三 直線與圓錐曲線有關(guān)的問題
1.直線與圓錐曲線的位置關(guān)系,可以通過討論直線方程與曲線方程組成的方程組的實(shí)數(shù)解的個(gè)數(shù)來確定,通常消去方程組中變量y(或x)得到關(guān)于變量x(或y)的一元二次方程,考慮該一元二次方程的判別式Δ,則有:Δ>0?直線與圓錐曲線相交于兩點(diǎn);Δ=0?直線與圓錐曲線相切于一點(diǎn);Δ<0?直線與圓錐曲線無交點(diǎn).
2.直線l截圓錐曲線所得的弦長(zhǎng)|AB|=或 ,其中k是直線l的斜率,(x1,y1),(x2,y2)是直線與圓錐曲線的兩個(gè)交點(diǎn)A,B的坐標(biāo),且(x1-x2
5、)2=(x1+x2)2-4x1x2,x1+x2,x1x2可由一元二次方程的根與系數(shù)的關(guān)系整體給出.
類型一 圓錐曲線定義的應(yīng)用
例1 已知點(diǎn)M(2,1),點(diǎn)C是橢圓+=1的右焦點(diǎn),點(diǎn)A是橢圓上的動(dòng)點(diǎn),則|AM|+|AC|的最小值是________.
反思與感悟 應(yīng)用定義解決問題時(shí),需緊扣其內(nèi)涵,注意限制條件是否成立,然后得到相應(yīng)的結(jié)論.
跟蹤訓(xùn)練1 如圖所示,在正方體ABCD—A1B1C1D1中,P是側(cè)面BB1C1C內(nèi)一動(dòng)點(diǎn),若P到直線BC與到直線C1D1的距離相等,則動(dòng)點(diǎn)P的軌跡所在的曲線是( )
A.直線 B.圓
C.雙曲線 D.拋物線
類型二 圓錐曲線性
6、質(zhì)的應(yīng)用
例2 設(shè)P是拋物線y2=4x上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)A(-1,1)的距離與點(diǎn)P到直線x=-1的距離之和的最小值為________.
反思與感悟 圓錐曲線的性質(zhì)綜合性強(qiáng),需弄清每個(gè)性質(zhì)的真正內(nèi)涵,然后正確地應(yīng)用到解題中去.
跟蹤訓(xùn)練2 雙曲線-=1的兩條漸近線互相垂直,那么該雙曲線的離心率是( )
A.2 B. C. D.
類型三 直線與圓錐曲線的位置關(guān)系問題
例3 已知橢圓C:+=1(a>b>0)的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為,求△AOB面積的最大值.
7、
反思與感悟 解決圓錐曲線中的參數(shù)范圍問題與求最值問題類似,一般有兩種方法
(1)函數(shù)法:用其他變量表示該參數(shù),建立函數(shù)關(guān)系,利用求函數(shù)值域的方法求解.
(2)不等式法:根據(jù)題意建立含參數(shù)的不等關(guān)系式,通過解不等式求參數(shù)范圍.
跟蹤訓(xùn)練3 已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)P在C上且其橫坐標(biāo)為1,以F為圓心、|FP|為半徑的圓與C的準(zhǔn)線l相切.
(1)求p的值;
(2)設(shè)l與x軸交點(diǎn)為E,過點(diǎn)E作一條直線與拋物線C交于A,B兩點(diǎn),求線段AB的垂直平分線在x軸上的截距的取值范圍.
1.下列各對(duì)方程中,表示相同曲線的一對(duì)方程
8、是( )
A.y=與y2=x B.y=x與=1
C.y2-x2=0與|y|=|x| D.y=lg x2與y=2lg x
2.中心在原點(diǎn),焦點(diǎn)在x軸上,若長(zhǎng)軸長(zhǎng)為18,且兩個(gè)焦點(diǎn)恰好將長(zhǎng)軸三等分,則此橢圓的方程是( )
A.+=1 B.+=1
C.+=1 D.+=1
3.設(shè)橢圓+=1(m>0,n>0)的右焦點(diǎn)與拋物線y2=8x的焦點(diǎn)相同,離心率為,則此橢圓的方程為( )
A.+=1 B.+=1
C.+=1 D.+=1
4.點(diǎn)P(8,1)平分雙曲線x2-4y2=4的一條弦,則這條弦所在直線的方程是________________.
5.直線y=x+
9、3與曲線-=1交點(diǎn)的個(gè)數(shù)為________.
1.離心率的幾種求法
(1)定義法:由橢圓(雙曲線)的標(biāo)準(zhǔn)方程可知,不論橢圓(雙曲線)的焦點(diǎn)在x軸上還是在y軸上都有關(guān)系式a2-b2=c2(a2+b2=c2)以及e=,已知其中的任意兩個(gè)參數(shù),可以求其他的參數(shù),這是基本且常用的方法.
(2)方程法:建立參數(shù)a與c之間的齊次關(guān)系式,從而求出離心率,這是求離心率十分重要的方法.
(3)幾何法:與過焦點(diǎn)的三角形有關(guān)的離心率問題,根據(jù)平面幾何性質(zhì)、橢圓(雙曲線)的幾何性質(zhì)和定義,建立參數(shù)之間的關(guān)系.
2.圓錐曲線中的有關(guān)最值問題
在解決與圓錐曲線有關(guān)的最值問題時(shí),通常的處理策略
(1)若具
10、備定義的最值問題,可用定義將其轉(zhuǎn)化為幾何問題來處理.
(2)一般問題可由條件建立目標(biāo)函數(shù),然后利用函數(shù)求最值的方法進(jìn)行求解.如利用二次函數(shù)在閉區(qū)間上最值的求法,利用函數(shù)的單調(diào)性,亦可利用基本不等式等求解.
提醒:完成作業(yè) 第三章 章末復(fù)習(xí)課
答案精析
知識(shí)梳理
題型探究
例1 8-
跟蹤訓(xùn)練1 D
例2
跟蹤訓(xùn)練2 C
例3 解 (1)設(shè)橢圓的半焦距長(zhǎng)為c,依題意有
∴b=1.∴所求橢圓方程為+y2=1.
(2)設(shè)A(x1,y1),B(x2,y2).
①當(dāng)AB⊥x軸時(shí),|AB|=.
②當(dāng)AB與x軸不垂直時(shí),設(shè)直線AB的方程為y=kx+m.
由已知=,得m2=(k
11、2+1).
把y=kx+m代入橢圓方程,
整理得(3k2+1)x2+6kmx+3m2-3=0,
∴x1+x2=,x1x2=.
∴|AB|2=(1+k2)(x2-x1)2
=(1+k2)
=
=
=3+=3+(k≠0)
≤3+=4.
當(dāng)且僅當(dāng)9k2=,即k=±時(shí)等號(hào)成立.
此時(shí)Δ=12(3k2+1-m2)>0,
∴|AB|≤2,
當(dāng)k=0時(shí),|AB|=,
綜上所述,|AB|max=2.
∴當(dāng)|AB|最大時(shí),△AOB面積取得最大值
S=×|AB|max×=.
跟蹤訓(xùn)練3 解 (1)因?yàn)橐訤為圓心、|FP|為半徑的圓與C的準(zhǔn)線l相切,
所以圓的半徑為p,即|FP|
12、=p,
所以FP⊥x軸,又點(diǎn)P的橫坐標(biāo)為1,
所以焦點(diǎn)F的坐標(biāo)為(1,0),從而p=2.
(2)由(1)知拋物線C的方程為y2=4x,
設(shè)A(x1,y1),B(x2,y2),
線段AB的垂直平分線與x軸的交點(diǎn)D(x0,0),
則由|DA|=|DB|,y=4x1,y=4x2,
得(x1-x0)2+y=(x2-x0)2+y,
化簡(jiǎn)得x0=+2, ①
設(shè)直線AB的方程為x=my-1,代入拋物線C的方程,
得y2-4my+4=0,由Δ>0得m2>1,
由根與系數(shù)的關(guān)系得y1+y2=4m,
所以x1+x2=m(y1+y2)-2=4m2-2,
代入①得x0=2m2+1>3,
故線段AB的垂直平分線在x軸上的截距的取值范圍是(3,+∞).
當(dāng)堂訓(xùn)練
1.C 2.A 3.B 4.2x-y-15=0 5.3
7