2022年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 不等式(含解析)
《2022年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 不等式(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 不等式(含解析)(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 不等式(含解析)
1、(xx·湖南卷)設(shè)a>b>1,c<0,給出下列三個(gè)結(jié)論:
①>;②ac
2、>loga(b-c),知③正確. 答案:C 2、若<<0,則下列不等式:①<;②|a|+b>0;③a->b-;④ln a2>ln b2中,正確的不等式是 ( ). A.①④ B.②③ C.①③ D.②④ 解析 法一 由<<0,可知b<a<0.①中,因?yàn)閍+b<0,ab>0,所以<0,>0.故有<,即①正確;②中,因?yàn)閎<a<0,所以-b>-a>0.故-b>|a|,即|a|+b<0,故②錯(cuò)誤;③中,因?yàn)閎<a<0,又<<0,所以a->b-,故③正確;④中,因?yàn)閎<a<0,根據(jù)y=x2在(-∞,0)上為減函數(shù),可得b2>a2>0,而y=ln x在定義域
3、(0,+∞)上為增函數(shù),所以ln b2>ln a2,故④錯(cuò)誤.由以上分析,知①③正確. 3、設(shè)f(x)=ax2+bx,若1≤f(-1)≤2,2≤f(1)≤4,則f(-2)的取值范圍是________. [正解] 法一 設(shè)f(-2)=mf(-1)+nf(1)(m,n為待定系數(shù)),則4a-2b=m(a-b)+n(a+b), 即4a-2b=(m+n)a+(n-m)b. 于是得解得 ∴f(-2)=3f(-1)+f(1). 又∵1≤f(-1)≤2,2≤f(1)≤4, ∴5≤3f(-1)+f(1)≤10,故5≤f(-2)≤10. 4、如果-1<a+b<3,3<a-b<5,那么2a-3b的
4、取值范圍是( ). A.(2,8) B.(5,14) C.(6,13) D.(7,13) 解析 設(shè)a+b=x,a-b=y(tǒng), ∴-1<x<3,3<y<5,a=,b=, ∴2a-3b=x+y-(x-y)=-x+y. 又∵-<-x<,<y<, ∴6<-x+y<13, ∴2a-3b的取值范圍是(6,13). 答案 C 5.已知a>b,則下列不等式成立的是( ). A.a(chǎn)2-b2≥0 B.a(chǎn)c>bc C.|a|>|b| D.2a>2b 解析 A中,若a=-1,b=-2,則a2-b2≥0不成立;當(dāng)c=0時(shí),B不成立;當(dāng)0>a>b時(shí),C不成立;由a>b知2a>2b成
5、立,故選D. 答案 D 6.已知0<a<1,x=loga+loga ,y=loga5,z=loga -loga ,則( ). A.x>y>z B.z>y>x C.z>x>y D.y>x>z 解析 由題意得x=loga,y=loga,z=loga,而0<a<1,∴函數(shù)y=loga x在(0,+∞)上單調(diào)遞減,∴y>x>z. 答案 D 7.下面四個(gè)條件中,使a>b成立的充分不必要條件是( ). A.a(chǎn)>b+1 B.a(chǎn)>b-1 C.a(chǎn)2>b2 D.a(chǎn)3>b3 解析 由a>b+1,得a>b+1>b,即a>b,而由a>b不能得出a>b+1,因此,使a>b成立的充分不必要條
6、件是a>b+1. 答案 A 8.“|x|<2”是“x2-x-6<0”的( ). A.充分而不必要條件 B.必要而不充分條件 C.充要條件 D.既不充分也不必要條件 解析 不等式|x|<2的解集是(-2,2),而不等式x2-x-6<0的解集是(-2,3),于是當(dāng)x∈(-2,2)時(shí),可得x∈(-2,3),反之則不成立,故選A. 答案 A 9.若a,b是任意實(shí)數(shù),且a>b,則下列不等式成立的是( ). A.a(chǎn)2>b2 B.<1 C.lg(a-b)>0 D.a<b 解析 ∵0<<1,∴y=x是減函數(shù),又a>b, ∴a<
7、b. 答案 D 一元二次不等式及其解法 1、已知函數(shù)f(x)=(ax-1)(x+b),如果不等式f(x)>0的解集是(-1,3),則不等式f(-2x)<0的解集是 ( ). A.∪ B. C.∪ D. 解析 由f(x)>0,得ax2+(ab-1)x-b>0,又其解集是(-1,3),∴a<0.且解得a=-1或, ∴a=-1,b=-3.∴f(x)=-x2+2x+3, ∴f(-2x)=-4x2-4x+3, 由-4x2-4x+3<0,得4x2+4x-3>0, 解得x>或x<-,故選A. 答案 A 2、(xx·江蘇卷)已知f(x)是定義在R上的奇函數(shù).當(dāng)x>0時(shí),f(x)
8、=x2-4x,則不等式f(x)>x的解集用區(qū)間表示為_(kāi)_______. 解析 ∵f(x)是定義在R上的奇函數(shù), ∴f(0)=0, 又當(dāng)x<0時(shí),-x>0, ∴f(-x)=x2+4x. 又f(x)為奇函數(shù), ∴f(-x)=-f(x), ∴f(x)=-x2-4x(x<0), ∴f(x)= (1)當(dāng)x>0時(shí),由f(x)>x得x2-4x>x,解得x>5; (2)當(dāng)x=0時(shí),f(x)>x無(wú)解; (3)當(dāng)x<0時(shí),由f(x)>x得-x2-4x>x,解得-5<x<0. 綜上得不等式f(x)>x的解集用區(qū)間表示為(-5,0)∪(5,+∞). 答案 (-5,0)∪(5,+∞) 2、關(guān)
9、于x的不等式x2-2ax-8a2<0(a>0)的解集為(x1,x2),且x2-x1=15,則a等于 ( ). A. B. C. D. 解析:法一 ∵不等式x2-2ax-8a2<0的解集為(x1,x2),∴x1,x2是方程x2-2ax-8a2=0的兩根. 由根與系數(shù)的關(guān)系知 ∴x2-x1===15,又∵a>0,∴a=,故選A. 法二 由x2-2ax-8a2<0,得(x+2a)(x-4a)<0, ∵a>0,∴不等式x2-2ax-8a2<0的解集為(-2a,4a), 又∵不等式x2-2ax-8a2<0的解集為(x1,x2), ∴x1=-2a,x2=4a.∵
10、x2-x1=15, ∴4a-(-2a)=15,解得a=,故選A. 3、已知集合P={x|x2-x-2≤0},Q={x|log2(x-1)≤1},則(?RP)∩Q=( ). A.[2,3] B.(-∞,-1]∪[3,+∞) C.(2,3] D.(+∞,-1]∪(3,+∞) 解析 依題意,得P={x|-1≤x≤2},Q={x|1<x≤3},則(?RP)∩Q=(2,3]. 答案 C 4.不等式x2+ax+4<0的解集不是空集,則實(shí)數(shù)a的取值范圍是( ). A.[-4,4] B.(-4,4) C.(-∞,-4]∪[4,+∞) D.(-∞,-4)∪(4,+∞) 解析 不等
11、式x2+ax+4<0的解集不是空集,只需Δ=a2-16>0,∴a<-4或a>4,故選D.
答案 D
5.已知f(x)=則不等式f(x) 12、a<0的解集是( ).
A.(2,3)
B.(-∞,2)∪(3,+∞)
C.
D.∪
解析 由題意知-,-是方程ax2-bx-1=0的根,所以由根與系數(shù)的關(guān)系得-+=,×=-.解得a=-6,b=5,不等式x2-bx-a<0即為x2-5x+6<0,解集為(2,3).
答案 A
7.已知函數(shù)f(x)=ax2+bx+c,不等式f(x)<0的解集為{x|x<-3,或x>1},則函數(shù)y=f(-x)的圖象可以為( ).
解析 由f(x)<0的解集為{x|x<-3,或x>1}知a<0,y=f(x)的圖象與x軸交點(diǎn)為(-3,0),(1,0),∴f(-x)圖象開(kāi)口向下,與x軸交點(diǎn)為( 13、3,0),(-1,0).
答案 B
8.(xx·四川卷)已知f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.
解析 ∵f(x)是偶函數(shù),
∴f(x)=f(|x|).
又x≥0時(shí),f(x)=x2-4x,
不等式f(x+2)<5?f(|x+2|)<5
?|x+2|2-4|x+2|<5
?(|x+2|-5)(|x+2|+1)<0
?|x+2|-5<0?|x+2|<5?-5<x+2<5?-7<x<3.
故解集為(-7,3).
答案 (-7,3)
9.若不等式x2-(a+1)x+a≤0的解集是[-4,3]的子集 14、,則a的取值范圍是________.
解析 原不等式即(x-a)(x-1)≤0,當(dāng)a<1時(shí),不等式的解集為[a,1],此時(shí)只要a≥-4即可,即-4≤a<1;當(dāng)a=1時(shí),不等式的解為x=1,此時(shí)符合要求;當(dāng)a>1時(shí),不等式的解集為[1,a],此時(shí)只要a≤3即可,即1<a≤3.綜上可得-4≤a≤3.
答案 [-4,3]
10.(xx·安徽卷)已知一元二次不等式f(x)<0的解集為,則f(10x)>0的解集為( ).
A.{x|x<-1或x>-lg 2} B.{x|-1<x<-lg 2}
C.{x|x>-lg 2} D.{x|x<-lg 2}
解析 依題意知f(x)>0的解為 15、-1<x<,故-1<10x<,解得x<lg =-lg 2.
答案 D
11.已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且不等式f(x)>-2x的解集為(1,3).
(1)若方程f(x)+6a=0有兩個(gè)相等的根,求f(x)的解析式;
(2)若f(x)的最大值為正數(shù),求a的取值范圍.
解 (1)∵f(x)+2x>0的解集為(1,3),
f(x)+2x=a(x-1)(x-3),且a<0,
因而f(x)=a(x-1)(x-3)-2x=ax2-(2+4a)x+3a.①
由方程f(x)+6a=0,得ax2-(2+4a)x+9a=0.②
因?yàn)榉匠挞谟袃蓚€(gè)相等的根,
所以Δ=[-(2+4a)]
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 銷售技巧培訓(xùn)課件:接近客戶的套路總結(jié)
- 20種成交的銷售話術(shù)和技巧
- 銷售技巧:接近客戶的8種套路
- 銷售套路總結(jié)
- 房產(chǎn)銷售中的常見(jiàn)問(wèn)題及解決方法
- 銷售技巧:值得默念的成交話術(shù)
- 銷售資料:讓人舒服的35種說(shuō)話方式
- 汽車銷售績(jī)效管理規(guī)范
- 銷售技巧培訓(xùn)課件:絕對(duì)成交的銷售話術(shù)
- 頂尖銷售技巧總結(jié)
- 銷售技巧:電話營(yíng)銷十大定律
- 銷售逼單最好的二十三種技巧
- 銷售最常遇到的10大麻煩
- 銷售資料:銷售10大黃金觀念
- 銷售資料:導(dǎo)購(gòu)常用的搭訕?lè)椒?/a>