欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

2022年高考數(shù)學二輪專題復習 第三部分 題型技法考前提分 題型專項訓練6 立體幾何 新人教A版

上傳人:xt****7 文檔編號:105401216 上傳時間:2022-06-12 格式:DOC 頁數(shù):8 大?。?23.02KB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學二輪專題復習 第三部分 題型技法考前提分 題型專項訓練6 立體幾何 新人教A版_第1頁
第1頁 / 共8頁
2022年高考數(shù)學二輪專題復習 第三部分 題型技法考前提分 題型專項訓練6 立體幾何 新人教A版_第2頁
第2頁 / 共8頁
2022年高考數(shù)學二輪專題復習 第三部分 題型技法考前提分 題型專項訓練6 立體幾何 新人教A版_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學二輪專題復習 第三部分 題型技法考前提分 題型專項訓練6 立體幾何 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學二輪專題復習 第三部分 題型技法考前提分 題型專項訓練6 立體幾何 新人教A版(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學二輪專題復習 第三部分 題型技法考前提分 題型專項訓練6 立體幾何 新人教A版 1. 如圖,在三棱錐P-ABC中,PA=PB=2,PC=4,∠APB=∠BPC=60°,cos∠APC=. (1)求證:平面PAB⊥平面PBC; (2)E為BC上的一點.若直線AE與平面PBC所成的角為30°,求BE的長. 2. 如圖,四邊形ABCD為平行四邊形,AB=5,AD=4,BD=3,將△BCD沿著BD翻折到平面BC1D處,E,F分別為邊AB,C1D的中點. (1)求證:EF∥平面BCC1; (2)若異面直線EF,

2、BC1所成的角為30°,求直線C1D與平面ABCD所成角的正弦值. 3.(xx浙江寧波期末考試,文18) 如圖,已知AB⊥平面BEC,AB∥CD,AB=BC=4,CD=2,△BEC為等邊三角形. (1)求證:平面ABE⊥平面ADE; (2)求AE與平面CDE所成角的正弦值. 4. (xx浙江湖州第三次教學質(zhì)量調(diào)測,文18)如圖,在三棱錐P-ABC中,△ABC是邊長為2的正三角形,∠PCA=90°,E,H分別為AP,AC的中點,AP=4,BE=.

3、(1)求證:AC⊥平面BEH; (2)求直線PA與平面ABC所成角的正弦值. 5. 在三棱錐V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中點,且AC=BC=2,∠VDC=θ. (1)求證:平面VAB⊥平面VCD; (2)當角θ變化時,求直線BC與平面VAB所成的角的取值范圍. 6. 如圖,AB為圓O的直徑,點E,F在圓O上,且AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1. (1

4、)求證:AF⊥平面CBF; (2)設(shè)FC的中點為M,求證:OM∥平面DAF; (3)設(shè)平面CBF將幾何體EFABCD分成的兩個錐體的體積分別為VF-ABCD,VF-CBE,求VF-ABCD∶VF-CBE. 答案 題型專項訓練6 立體幾何(解答題專項) 1.(1)證明:在△PAB中,由PA=PB=2,∠APB=60°,得AB=2. 在△PBC中,PB=2,PC=4,∠BPC=60°,由余弦定理,得BC=2. 在△PAC中,PA=2,PC=4,cos∠APC=,由余弦定理,得AC=4. 因為AB2+BC2=AC2,所以AB⊥BC. 因為PB2+BC

5、2=PC2,所以PB⊥BC. 又因為AB∩PB=B,所以BC⊥平面PAB. 又因為BC?平面PBC,所以平面PAB⊥平面PBC. (2)解: 取PB的中點F,連接EF,則AF⊥PB.又因為平面PAB⊥平面PBC, 平面PAB∩平面PBC=PB,AF?平面PAB, 所以AF⊥平面PBC. 因此∠AEF是直線AE與平面PBC所成的角,即∠AEF=30°. 在正△PAB中,AF=PA=. 在Rt△AEF中,AE==2. 在Rt△ABE中,BE==2. 2. (1)證明:連接CC1,取CC1的中點G,連接FG,BG,EF. ∵四邊形ABCD是平行四邊形,F,G分別為C

6、1D,CC1的中點, ∴FG∥CD,EB∥CD且FG=EB=CD, ∴EB∥FG且EB=FG,∴四邊形BEFG是平行四邊形, ∴EF∥BG,∵BG?平面BCC1,EF?平面BCC1, ∴EF∥平面BCC1. (2)解:由(1)可知,∠C1BG即為異面直線EF,BC1的所成角,∴∠C1BG=30°. ∵BC1=BC,∴∠C1BC=60°,∴△C1BC是正三角形. 又∵AB=5,AD=4,BD=3,∴∠ADB=∠CBD=∠C1BD=90°. ∴BD⊥BC,BD⊥BC1,且BC∩BC1=B, ∴BD⊥平面BCC1, ∴平面ABCD⊥平面BCC1. 過C1作C1H⊥BC,垂足為H

7、,則C1H⊥平面ABCD,連接DH, 則∠C1DH即為直線C1D與平面ABCD所成的角, ∴sin∠C1DH=. 3. (1)證明:取AE的中點F,連接BF,DF. 由AB=BE=4,知BF⊥AE, 計算可得BF=2,AD=DE=BD=2,DF=2,則BF2+DF2=8+12=20=BD2,即BF⊥DF. 因為AE∩DF=F,所以BF⊥平面ADE. 又BF?平面ABE,所以平面ABE⊥平面ADE. (2)解: 如圖,補全成正三棱柱AMN-BEC,取MN中點H,連接AH,EH. 由題意知△AMN為正三角形,則AH⊥MN, 又CD⊥平面AMN,AH?平面AMN,所以

8、AH⊥CD. 因為MN∩CD=N,所以AH⊥平面CDE,則∠AEH即為AE與平面CDE所成的角, 在△AEH中,AH⊥EH,AH=2,AE=4, sin∠AEH=,即AE與平面CDE所成角的正弦值為. 4.(1)證明:因為△ABC是邊長為2的正三角形, 所以BH⊥AC. 又因為E,H分別為AP,AC的中點, 所以EH∥PC, 因為∠PCA=90°,所以PC⊥AC,所以EH⊥AC. 因為EH∩BH=H,所以AC⊥平面BEH. (2) 解:取BH的中點G,連接AG. 因為EH=BH=BE=,所以EG⊥BH. 又因為AC⊥平面BEH,EG?平面BEH,所以EG⊥AC.

9、 因為BH∩AC=H, 所以EG⊥平面ABC. 所以∠EAG為PA與平面ABC所成的角. 在直角三角形EAG中,AE=2,EG=, 所以sin∠EAG=. 所以PA與平面ABC所成的角的正弦值為. 5.(1)證明:∵AC=BC,D是AB的中點, ∴CD⊥AB,∵VC⊥底面ABC,AB?平面ABC, ∴VC⊥AB. ∵VC∩CD=C,∴AB⊥平面VCD. 又AB?平面VAB,∴平面VAB⊥平面VCD. (2)解:過點C在平面VCD內(nèi)作CH⊥VD于點H, 連接BH,由(1)知AB⊥CH, ∵VD∩AB=D,∴CH⊥平面VAB,∴∠CBH就是直線BC與平面VAB所成的角

10、. 在Rt△CHD中,CD=,CH=sin θ. 設(shè)∠CBH=φ,在Rt△BHC中,CH=2sin φ. ∴sin θ=sin φ, ∵0<θ<,∴0

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!