《2022年高中數(shù)學(xué) 第三章《簡單的線性規(guī)劃》教案4 新人教A版必修5》由會員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學(xué) 第三章《簡單的線性規(guī)劃》教案4 新人教A版必修5(2頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高中數(shù)學(xué) 第三章《簡單的線性規(guī)劃》教案4 新人教A版必修5
授課類型:新授課
【教學(xué)目標(biāo)】
1.知識與技能:掌握線性規(guī)劃問題的圖解法,并能應(yīng)用它解決一些簡單的實(shí)際問題;
2.過程與方法:經(jīng)歷從實(shí)際情境中抽象出簡單的線性規(guī)劃問題的過程,提高數(shù)學(xué)建模能力;
3.情態(tài)與價值:引發(fā)學(xué)生學(xué)習(xí)和使用數(shù)學(xué)知識的興趣,發(fā)展創(chuàng)新精神,培養(yǎng)實(shí)事求是、理論與實(shí)際相結(jié)合的科學(xué)態(tài)度和科學(xué)道德。
【教學(xué)重點(diǎn)】
利用圖解法求得線性規(guī)劃問題的最優(yōu)解;
【教學(xué)難點(diǎn)】
把實(shí)際問題轉(zhuǎn)化成線性規(guī)劃問題,并給出解答,解決難點(diǎn)的關(guān)鍵是根據(jù)實(shí)際問題中的已知條件,找出約束條件和目標(biāo)函數(shù),利用圖解法求得最優(yōu)解。
2、【教學(xué)過程】
1.課題導(dǎo)入
[復(fù)習(xí)引入]:
1、二元一次不等式Ax+By+C>0在平面直角坐標(biāo)系中表示直線Ax+By+C=0某一側(cè)所有點(diǎn)組成的平面區(qū)域(虛線表示區(qū)域不包括邊界直線)
2、目標(biāo)函數(shù), 線性目標(biāo)函數(shù),線性規(guī)劃問題,可行解,可行域, 最優(yōu)解:
2.講授新課
線性規(guī)劃在實(shí)際中的應(yīng)用:
線性規(guī)劃的理論和方法主要在兩類問題中得到應(yīng)用,一是在人力、物力、資金等資源一定的條件下,如何使用它們來完成最多的任務(wù);二是給定一項(xiàng)任務(wù),如何合理安排和規(guī)劃,能以最少的人力、物力、資金等資源來完成該項(xiàng)任務(wù)
下面我們就來看看線性規(guī)劃在實(shí)際中的一些應(yīng)用:
[范例講解]
例5 營養(yǎng)學(xué)家
3、指出,成人良好的日常飲食應(yīng)該至少提供0.075kg的碳水化合物,0.06kg的蛋白質(zhì),0.06kg的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg蛋白質(zhì),0.14kg脂肪,花費(fèi)28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白質(zhì),0.07kg脂肪,花費(fèi)21元。為了滿足營養(yǎng)專家指出的日常飲食要求,同時使花費(fèi)最低,需要同時食用食物A和食物B多少kg?
指出:要完成一項(xiàng)確定的任務(wù),如何統(tǒng)籌安排,盡量做到用最少的資源去完成它,這是線性規(guī)劃中最常見的問題之一.
例6 在上一節(jié)例3中,若根據(jù)有關(guān)部門的規(guī)定,初中每人每年可收取學(xué)費(fèi)1 600元,高中每人每年可收
4、取學(xué)費(fèi)2 700元。那么開設(shè)初中班和高中班各多少個,每年收取的學(xué)費(fèi)總額最高多?
指出:資源數(shù)量一定,如何安排使用它們,使得效益最好,這是線性規(guī)劃中常見的問題之一
結(jié)合上述兩例子總結(jié)歸納一下解決這類問題的思路和方法:
簡單線性規(guī)劃問題就是求線性目標(biāo)函數(shù)在線性約束條件下的最優(yōu)解,無論此類題目是以什么實(shí)際問題提出,其求解的格式與步驟是不變的:
(1)尋找線性約束條件,線性目標(biāo)函數(shù);
(2)由二元一次不等式表示的平面區(qū)域做出可行域;
(3)在可行域內(nèi)求目標(biāo)函數(shù)的最優(yōu)解
3.隨堂練習(xí)
課本第103頁練習(xí)2
4.課時小結(jié)
線性規(guī)劃的兩類重要實(shí)際問題的解題思路:
首先,應(yīng)準(zhǔn)確建立數(shù)學(xué)模型,即根據(jù)題意找出約束條件,確定線性目標(biāo)函數(shù)。然后,用圖解法求得數(shù)學(xué)模型的解,即畫出可行域,在可行域內(nèi)求得使目標(biāo)函數(shù)取得最值的解,最后,要根據(jù)實(shí)際意義將數(shù)學(xué)模型的解轉(zhuǎn)化為實(shí)際問題的解,即結(jié)合實(shí)際情況求得最優(yōu)解。
5.評價設(shè)計
課本第105頁習(xí)題3.3[A]組的第3題
【板書設(shè)計】