2022年人教A版高中數(shù)學(xué) 高三一輪 第十一章選修內(nèi)容 11-1 坐標(biāo)系《教案》
《2022年人教A版高中數(shù)學(xué) 高三一輪 第十一章選修內(nèi)容 11-1 坐標(biāo)系《教案》》由會員分享,可在線閱讀,更多相關(guān)《2022年人教A版高中數(shù)學(xué) 高三一輪 第十一章選修內(nèi)容 11-1 坐標(biāo)系《教案》(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年人教A版高中數(shù)學(xué) 高三一輪 第十一章選修內(nèi)容 11-1 坐標(biāo)系《教案》 1.平面直角坐標(biāo)系 設(shè)點(diǎn)P(x,y)是平面直角坐標(biāo)系中的任意一點(diǎn),在變換φ:的作用下,點(diǎn)P(x,y)對應(yīng)到點(diǎn)P′(x′,y′),稱φ為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡稱伸縮變換. 2.極坐標(biāo)系 (1)極坐標(biāo)與極坐標(biāo)系的概念 在平面上取一個定點(diǎn)O,自點(diǎn)O引一條射線Ox,同時(shí)確定一個長度單位和計(jì)算角度的正方向(通常取逆時(shí)針方向?yàn)檎较?,這樣就建立了一個極坐標(biāo)系.點(diǎn)O稱為極點(diǎn),射線Ox稱為極軸.平面內(nèi)任一點(diǎn)M的位置可以由線段OM的長度ρ和從射線Ox到射線OM的角度θ來刻畫(如圖所示).這兩個數(shù)
2、組成的有序數(shù)對(ρ,θ)稱為點(diǎn)M的極坐標(biāo).ρ稱為點(diǎn)M的極徑,θ稱為點(diǎn)M的極角.由極徑的意義可知ρ≥0.當(dāng)極角θ的取值范圍是[0,2π)時(shí),平面上的點(diǎn)(除去極點(diǎn))就與極坐標(biāo)(ρ,θ) (ρ≠0)建立一一對應(yīng)的關(guān)系.我們設(shè)定,極點(diǎn)的極坐標(biāo)中,極徑ρ=0,極角θ可取任意角. (2)極坐標(biāo)與直角坐標(biāo)的互化 設(shè)M為平面內(nèi)的一點(diǎn),它的直角坐標(biāo)為(x,y),極坐標(biāo)為(ρ,θ).由圖可知下面關(guān)系式成立: 或. 這就是極坐標(biāo)與直角坐標(biāo)的互化公式. 3.常見曲線的極坐標(biāo)方程 曲線 圖形 極坐標(biāo)方程 圓心在極點(diǎn),半徑為r的圓 ρ=r(0≤θ<2π) 圓心為(r,0),半徑為r的圓 ρ
3、=2rcos_θ(-≤θ<) 圓心為(r,),半徑為r的圓 ρ=2rsin_θ(0≤θ<π) 過極點(diǎn),傾斜角為α的直線 θ=α(ρ∈R) 或θ=π+α(ρ∈R) 過點(diǎn)(a,0),與極軸垂直的直線 ρcos θ=a(-<θ<) 過點(diǎn)(a,),與極軸平行的直線 ρsin_θ=a(0<θ<π) 1.求在極坐標(biāo)系中,過點(diǎn)(2,)且與極軸平行的直線方程. 解 點(diǎn)(2,)在直角坐標(biāo)系下的坐標(biāo)為(2cos ,2sin ),即(0,2). ∴過點(diǎn)(0,2)且與x軸平行的直線方程為y=2. 即為ρsin θ=2. 2.在極坐標(biāo)系中,已知兩點(diǎn)A、B的極坐標(biāo)分別為(3,
4、)、(4,),求△AOB(其中O為極點(diǎn))的面積. 解 由題意知A、B的極坐標(biāo)分別為(3,)、(4,),則△AOB的面積S△AOB=OA·OB·sin∠AOB=×3×4×sin =3. 3.在以O(shè)為極點(diǎn)的極坐標(biāo)系中,圓ρ=4sin θ和直線ρsin θ=a相交于A,B兩點(diǎn).當(dāng)△AOB是等邊三角形時(shí),求a的值. 解 由ρ=4sin θ可得x2+y2=4y,即x2+(y-2)2=4. 由ρsin θ=a可得y=a. 設(shè)圓的圓心為O′,y=a與x2+(y-2)2=4的兩交點(diǎn)A,B與O構(gòu)成等邊三角形,如圖所示. 由對稱性知∠O′OB=30°,OD=a. 在Rt△DOB中,易求DB=a,
5、∴B點(diǎn)的坐標(biāo)為(a,a). 又∵B在x2+y2-4y=0上,∴(a)2+a2-4a=0, 即a2-4a=0,解得a=0(舍去)或a=3. 題型一 極坐標(biāo)與直角坐標(biāo)的互化 例1 (1)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求線段y=1-x(0≤x≤1)的極坐標(biāo)方程. (2)在極坐標(biāo)系中,曲線C1和C2的方程分別為ρsin2θ=cos θ和ρsin θ=1.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,求曲線C1和C2交點(diǎn)的直角坐標(biāo). 解 (1)∵ ∴y=1-x化成極坐標(biāo)方程為ρcos θ+ρsin θ=1, 即ρ=. ∵0≤x≤
6、1,∴線段在第一象限內(nèi)(含端點(diǎn)), ∴0≤θ≤. (2)因?yàn)閤=ρcos θ,y=ρsin θ,由ρsin2θ=cos θ,得ρ2sin2θ=ρcos θ,所以曲線C1的直角坐標(biāo)方程為y2=x.由ρsin θ=1,得曲線C2的直角坐標(biāo)方程為y=1.由得故曲線C1與曲線C2交點(diǎn)的直角坐標(biāo)為(1,1). 思維升華 (1)極坐標(biāo)與直角坐標(biāo)互化的前提條件:①極點(diǎn)與原點(diǎn)重合;②極軸與x軸的正半軸重合;③取相同的單位長度.(2)直角坐標(biāo)方程化為極坐標(biāo)方程比較容易,只要運(yùn)用公式x=ρcos θ及y=ρsin θ直接代入并化簡即可;而極坐標(biāo)方程化為直角坐標(biāo)方程則相對困難一些,解此類問題常通過變形,構(gòu)造形
7、如ρcos θ,ρsin θ,ρ2的形式,進(jìn)行整體代換. (1)曲線C的直角坐標(biāo)方程為x2+y2-2x=0,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程. (2)求在極坐標(biāo)系中,圓ρ=2cos θ垂直于極軸的兩條切線方程. 解 (1)將x2+y2=ρ2,x=ρcos θ代入x2+y2-2x=0,得ρ2-2ρcos θ=0,整理得ρ=2cos θ. (2)由ρ=2cos θ,得ρ2=2ρcos θ,化為直角坐標(biāo)方程為x2+y2-2x=0,即(x-1)2+y2=1,其垂直于x軸的兩條切線方程為x=0和x=2,相應(yīng)的極坐標(biāo)方程為θ=(ρ∈R)和ρcos θ=2. 題
8、型二 求曲線的極坐標(biāo)方程 例2 將圓x2+y2=1上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得曲線C. (1)寫出曲線C的方程; (2)設(shè)直線l:2x+y-2=0與C的交點(diǎn)為P1,P2,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程. 解 (1)設(shè)(x1,y1)為圓上的點(diǎn),在已知變換下變?yōu)榍€C上的點(diǎn)(x,y),依題意,得 由x+y=1得x2+()2=1, 即曲線C的方程為x2+=1. (2)由解得或 不妨設(shè)P1(1,0),P2(0,2),則線段P1P2的中點(diǎn)坐標(biāo)為(,1),所求直線斜率為k=, 于是所求直線方程為y-
9、1=(x-), 化為極坐標(biāo)方程,并整理得2ρcos θ-4ρsin θ=-3, 即ρ=. 思維升華 求曲線的極坐標(biāo)方程的步驟:(1)建立適當(dāng)?shù)臉O坐標(biāo)系,設(shè)P(ρ,θ)是曲線上任意一點(diǎn);(2)由曲線上的點(diǎn)所適合的條件,列出曲線上任意一點(diǎn)的極徑ρ和極角θ之間的關(guān)系式;(3)將列出的關(guān)系式進(jìn)行整理、化簡,得出曲線的極坐標(biāo)方程. 在極坐標(biāo)系中,已知圓C經(jīng)過點(diǎn)P(,),圓心為直線ρsin=-與極軸的交點(diǎn),求圓C的極坐標(biāo)方程. 解 在ρsin=-中, 令θ=0,得ρ=1, 所以圓C的圓心坐標(biāo)為(1,0). 如圖所示,因?yàn)閳AC經(jīng)過點(diǎn) P, 所以圓C的半徑 PC= =1, 于是圓C過
10、極點(diǎn),所以圓C的極坐標(biāo)方程為ρ=2cos θ. 題型三 極坐標(biāo)方程的應(yīng)用 例3 (xx·課標(biāo)全國Ⅰ)在直角坐標(biāo)系xOy中,直線C1:x=-2,圓C2:(x-1)2+(y-2)2=1,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系. (1)求C1,C2的極坐標(biāo)方程; (2)若直線C3的極坐標(biāo)方程為θ=(ρ∈R),設(shè)C2與C3的交點(diǎn)為M,N,求△C2MN的面積. 解 (1)因?yàn)閤=ρcos θ,y=ρsin θ,所以C1的極坐標(biāo)方程為ρcos θ=-2, C2的極坐標(biāo)方程為ρ2-2ρcos θ-4ρsin θ+4=0. (2)將θ=代入ρ2-2ρcos θ-4ρsin θ+4=0,
11、 得ρ2-3ρ+4=0,解得ρ1=2,ρ2=. 故ρ1-ρ2=,即|MN|=. 由于C2的半徑為1,所以△C2MN為等腰直角三角形, 所以△C2MN的面積為. 思維升華 (1)已知極坐標(biāo)系方程討論位置關(guān)系時(shí),可以先化為直角坐標(biāo)方程;(2)在曲線的方程進(jìn)行互化時(shí),一定要注意變量的范圍,注意轉(zhuǎn)化的等價(jià)性. (xx·廣州調(diào)研)在極坐標(biāo)系中,求直線ρsin(θ+)=2被圓ρ=4截得的弦長. 解 由ρsin(θ+)=2,得(ρsin θ+ρcos θ)=2可化為x+y-2=0.圓ρ=4可化為x2+y2=16,由圓中的弦長公式得:2=2=4.故所求弦長為4. 在用方程解決直線、圓和圓
12、錐曲線的有關(guān)問題時(shí),將極坐標(biāo)方程化為直角坐標(biāo)方程,有助于對方程所表示的曲線的認(rèn)識,從而達(dá)到化陌生為熟悉的目的,這是轉(zhuǎn)化與化歸思想的應(yīng)用. A組 專項(xiàng)能力提升 (時(shí)間:50分鐘) 1.(xx·廣東)已知直線l的極坐標(biāo)方程為2ρsin=,點(diǎn)A的極坐標(biāo)為,求點(diǎn)A到直線l的距離. 解 依題可知直線l:2ρsin=和點(diǎn)A可化為l:x-y+1=0和A(2,-2),所以點(diǎn)A到直線l的距離為d==. 2.在極坐標(biāo)系(ρ,θ)(0≤θ<2π)中,求曲線ρ(cos θ+sin θ)=1與ρ(sin θ-cos θ)=1的交點(diǎn)的極坐標(biāo). 解 曲線ρ(cos θ+sin θ)=1化為直角坐標(biāo)方程為x+
13、y=1,ρ(sin θ-cos θ)=1化為直角坐標(biāo)方程為y-x=1.聯(lián)立方程組得則交點(diǎn)為(0,1),對應(yīng)的極坐標(biāo)為. 3.在極坐標(biāo)系中,已知圓ρ=3cos θ與直線2ρcos θ+4ρsin θ+a=0相切,求實(shí)數(shù)a的值. 解 圓ρ=3cos θ的直角坐標(biāo)方程為x2+y2=3x, 即2+y2=, 直線2ρcos θ+4ρsin θ+a=0的直角坐標(biāo)方程為2x+4y+a=0. 因?yàn)閳A與直線相切,所以=, 解得a=-3±3. 4.在極坐標(biāo)系中,求曲線ρ=2cos θ關(guān)于直線θ=對稱的曲線的極坐標(biāo)方程. 解 以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸建立直角坐標(biāo)系, 則曲線ρ=2cos θ的直
14、角坐標(biāo)方程為(x-1)2+y2=1, 且圓心為(1,0). 直線θ=的直角坐標(biāo)方程為y=x, 因?yàn)閳A心(1,0)關(guān)于y=x的對稱點(diǎn)為(0,1), 所以圓(x-1)2+y2=1關(guān)于y=x的對稱曲線為x2+(y-1)2=1. 所以曲線ρ=2cos θ關(guān)于直線θ=對稱的曲線的極坐標(biāo)方程為ρ=2sin θ. 5.在極坐標(biāo)系中,P是曲線C1:ρ=12sin θ上的動點(diǎn),Q是曲線C2:ρ=12cos(θ-)上的動點(diǎn),求PQ的最大值. 解 對曲線C1的極坐標(biāo)方程進(jìn)行轉(zhuǎn)化: ∵ρ=12sin θ,∴ρ2=12ρsin θ,∴x2+y2-12y=0, 即x2+(y-6)2=36. 對曲線C2
15、的極坐標(biāo)方程進(jìn)行轉(zhuǎn)化: ∵ρ=12cos(θ-), ∴ρ2=12ρ(cos θcos+sin θsin), ∴x2+y2-6x-6y=0, ∴(x-3)2+(y-3)2=36, ∴PQmax=6+6+=18. 6.在極坐標(biāo)系中,O是極點(diǎn),設(shè)A(4,),B(5,-),求△AOB的面積. 解 如圖所示,∠AOB=2π--=, OA=4,OB=5, 故S△AOB=×4×5×sin =5. B組 專項(xiàng)能力提升 (時(shí)間:30分鐘) 7.已知P(5,),O為極點(diǎn),求使△POP′為正三角形的點(diǎn)P′的坐標(biāo). 解 設(shè)P′點(diǎn)的極坐標(biāo)為(ρ,θ). ∵△POP′為正三角形,如圖所示,
16、 ∴∠POP′=. ∴θ=-=或θ=+=π. 又ρ=5,∴P′點(diǎn)的極坐標(biāo)為(5,)或(5,π). 8.在極坐標(biāo)系中,判斷直線ρcos θ-ρsin θ+1=0與圓ρ=2sin θ的位置關(guān)系. 解 直線ρcos θ-ρsin θ+1=0可化成x-y+1=0,圓ρ=2sin θ可化為x2+y2=2y,即x2+(y-1)2=1.圓心(0,1)到直線x-y+1=0的距離d==0<1.故直線與圓相交. 9.在極坐標(biāo)系中,已知三點(diǎn)M、N(2,0)、P. (1)將M、N、P三點(diǎn)的極坐標(biāo)化為直角坐標(biāo); (2)判斷M、N、P三點(diǎn)是否在一條直線上. 解 (1)由公式得M的直角坐標(biāo)為(1,-);
17、 N的直角坐標(biāo)為(2,0);P的直角坐標(biāo)為(3,). (2)∵kMN==,kNP==. ∴kMN=kNP,∴M、N、P三點(diǎn)在一條直線上. 10.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.曲線C的極坐標(biāo)方程為ρcos(θ-)=1,M,N分別為C與x軸、y軸的交點(diǎn). (1)寫出C的直角坐標(biāo)方程,并求M、N的極坐標(biāo); (2)設(shè)MN的中點(diǎn)為P,求直線OP的極坐標(biāo)方程. 解 (1)由ρcos(θ-)=1 得ρ(cos θ+sin θ)=1. 從而C的直角坐標(biāo)方程為x+y=1, 即x+y=2. 當(dāng)θ=0時(shí),ρ=2,所以M(2,0). 當(dāng)θ=時(shí),ρ=,所以N(,). (2)M點(diǎn)的直角坐標(biāo)為(2,0). N點(diǎn)的直角坐標(biāo)為(0,). 所以P點(diǎn)的直角坐標(biāo)為(1,). 則P點(diǎn)的極坐標(biāo)為(,), 所以直線OP的極坐標(biāo)方程為θ=(ρ∈R).
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 110中國人民警察節(jié)(筑牢忠誠警魂感受別樣警彩)
- 2025正字當(dāng)頭廉字入心爭當(dāng)公安隊(duì)伍鐵軍
- XX國企干部警示教育片觀后感筑牢信仰之基堅(jiān)守廉潔底線
- 2025做擔(dān)當(dāng)時(shí)代大任的中國青年P(guān)PT青年思想教育微黨課
- 2025新年工作部署會圍繞六個干字提要求
- XX地區(qū)中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 支部書記上黨課筑牢清廉信念為高質(zhì)量發(fā)展?fàn)I造風(fēng)清氣正的環(huán)境
- 冬季消防安全知識培訓(xùn)冬季用電防火安全
- 2025加強(qiáng)政治引領(lǐng)(政治引領(lǐng)是現(xiàn)代政黨的重要功能)
- 主播直播培訓(xùn)直播技巧與方法
- 2025六廉六進(jìn)持續(xù)涵養(yǎng)良好政治生態(tài)
- 員工職業(yè)生涯規(guī)劃方案制定個人職業(yè)生涯規(guī)劃
- 2024年XX地區(qū)黨建引領(lǐng)鄉(xiāng)村振興工作總結(jié)
- XX中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 幼兒園期末家長會長長的路慢慢地走