欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

2022屆高考數(shù)學二輪復習 第一篇 專題六 解析幾何 第1講 直線與圓、圓錐曲線的概念、方程與性質(zhì)限時訓練 文

上傳人:xt****7 文檔編號:105861908 上傳時間:2022-06-12 格式:DOC 頁數(shù):8 大小:1.05MB
收藏 版權申訴 舉報 下載
2022屆高考數(shù)學二輪復習 第一篇 專題六 解析幾何 第1講 直線與圓、圓錐曲線的概念、方程與性質(zhì)限時訓練 文_第1頁
第1頁 / 共8頁
2022屆高考數(shù)學二輪復習 第一篇 專題六 解析幾何 第1講 直線與圓、圓錐曲線的概念、方程與性質(zhì)限時訓練 文_第2頁
第2頁 / 共8頁
2022屆高考數(shù)學二輪復習 第一篇 專題六 解析幾何 第1講 直線與圓、圓錐曲線的概念、方程與性質(zhì)限時訓練 文_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022屆高考數(shù)學二輪復習 第一篇 專題六 解析幾何 第1講 直線與圓、圓錐曲線的概念、方程與性質(zhì)限時訓練 文》由會員分享,可在線閱讀,更多相關《2022屆高考數(shù)學二輪復習 第一篇 專題六 解析幾何 第1講 直線與圓、圓錐曲線的概念、方程與性質(zhì)限時訓練 文(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022屆高考數(shù)學二輪復習 第一篇 專題六 解析幾何 第1講 直線與圓、圓錐曲線的概念、方程與性質(zhì)限時訓練 文 【選題明細表】 知識點、方法 題號 直線與圓 1,6,12,15 圓錐曲線的定義及應用 5,9,10 圓錐曲線的方程 4,8,16 圓錐曲線的幾何性質(zhì) 2,3 圓錐曲線的離心率 7,11,13,14 一、選擇題 1.(2018·吉林長春市一模)已知圓x2+y2-4x+6y=0的圓心坐標為(a,b),則a2+b2等于( D ) (A)8 (B)16 (C)12 (D)13 解析:由圓的標準方程可知圓心為(2,-3),即a2+b2=13.故選D. 2.

2、(2018·浙江卷)雙曲線-y2=1的焦點坐標是( B ) (A)(-,0),(,0) (B)(-2,0),(2,0) (C)(0,-),(0,) (D)(0,-2),(0,2) 解析:因為雙曲線方程為-y2=1, 所以a2=3,b2=1,且雙曲線的焦點在x軸上, 所以c===2, 即得該雙曲線的焦點坐標為(-2,0),(2,0).故選B. 3.(2018·安徽合肥高三調(diào)研)下列雙曲線中,漸近線方程不是y=±x的是( D ) (A)-=1 (B)-=1 (C)-=1 (D)-=1 解析:D選項中,令-=0,得漸近線方程為y=±x,故選D. 4.(2018·石家莊重點高中

3、摸底考試)已知雙曲線過點(2,3),漸近線方程為y=±x,則該雙曲線的標準方程是( C ) (A)-=1 (B)-=1 (C)x2-=1 (D)-=1 解析:法一 當雙曲線的焦點在x軸上時,設雙曲線的標準方程是-=1(a>0,b>0),由題意得解得 所以該雙曲線的標準方程為x2-=1;當雙曲線的焦點在y軸上時,設雙曲線的標準方程是-=1(a>0,b>0),由題意得無解.故該雙曲線的標準方程為x2-=1.選C. 法二 當其中的一條漸近線方程y=x中的x=2時,y=2>3,又點(2,3)在第一象限,所以雙曲線的焦點在x軸上,設雙曲線的標準方程是-=1(a>0,b>0),由題意得解得

4、所以該雙曲線的標準方程為x2-=1,故選C. 法三 因為雙曲線的漸近線方程為y=±x, 即=±x, 所以可設雙曲線的方程是x2-=λ(λ≠0), 將點(2,3)代入,得λ=1, 所以該雙曲線的標準方程為x2-=1, 故選C. 5.設F1,F2分別是雙曲線x2-=1的左、右焦點,P是雙曲線上的一點,且3|PF1|=4|PF2|,則△PF1F2的面積等于( C ) (A)4 (B)8 (C)24 (D)48 解析:a2=1,b2=24, 所以c2=a2+b2=25, 所以c=5. 因為|PF1|-|PF2|=2a=2,3|PF1|=4|PF2|, 所以|PF1|=8,|P

5、F2|=6. 又|F1F2|=2c=10,所以∠F1PF2=90°. 所以=|PF1|·|PF2|=24.故選C. 6.過三點A(1,3),B(4,2),C(1,-7)的圓交y軸于M,N兩點,則|MN|等于( C ) (A)2 (B)8 (C)4 (D)10 解析:設圓心為P(a,b),由點A(1,3),C(1,-7)在圓上,知b==-2,再由|PA|=|PB|,得a=1.則P(1,-2),|PA|==5,于是圓P的方程為(x-1)2+(y+2)2=25.令x=0,得y=-2±2,則|MN|=|(-2+2)- (-2-2)|=4.故選C. 7.(2017·全國Ⅲ卷)已知橢圓C:+=

6、1(a>b>0)的左、右頂點分別為A1,A2,且以線段A1A2為直徑的圓與直線bx-ay+2ab=0相切,則C的離心率為( A ) (A) (B) (C) (D) 解析:圓心(0,0)到直線的距離等于圓的半徑a, 即=a, 解得a2=3b2,c2=a2-b2=2b2, 所以e2==,e=,故選A. 8.(2018·天津卷)已知雙曲線-=1(a>0,b>0)的離心率為2,過右焦點且垂直于x軸的直線與雙曲線交于A,B兩點.設A,B到雙曲線的同一條漸近線的距離分別為d1和d2,且d1+d2=6,則雙曲線的方程為( A ) (A)-=1 (B)-=1 (C)-=1 (D)-=1 解析

7、:設雙曲線的右焦點為F(c,0). 將x=c代入-=1,得-=1, 所以y=±. 不妨設A(c,),B(c,-). 雙曲線的一條漸近線方程為y=x,即bx-ay=0, 則d1===(c-b), d2===(c+b), 所以d1+d2=·2c=2b=6, 所以b=3. 因為=2,c2=a2+b2,所以a2=3, 所以雙曲線的方程為-=1. 故選A. 9.(2018·鄭州市二次質(zhì)量預測)已知橢圓C:+=1(a>b>0)的左、右焦點分別為F1,F2,離心率為,過F2的直線l交C于A,B兩點,若△AF1B的周長為12,則C的方程為( D ) (A)+y2=1 (B)+=1

8、(C)+=1 (D)+=1 解析:由橢圓的定義,知 |AF1|+|AF2|=2a,|BF1|+|BF2|=2a, 所以△AF1B的周長為|AF1|+|AF2|+|BF1|+|BF2|=4a=12, 所以a=3. 因為橢圓的離心率e==, 所以c=2,所以b2=a2-c2=5, 所以橢圓C的方程為+=1,故選D. 10.(2018·福州市質(zhì)檢)過拋物線C:y2=2px(p>0)的焦點F的直線交C于A,B兩點,若|AF|=3|BF|=3,則p等于( C ) (A)3 (B)2 (C) (D)1 解析:如圖,分別過點A,B作準線l的垂線AA1,BB1,垂足分別為A1,B1,過點B

9、作BD⊥AA1于D,BD交x軸于E. 由已知條件及拋物線定義得|BB1|=|BF|=1,|AA1|=|AF|=3, 所以|AD|=3-1=2. 在Rt△ABD中,因為|AB|=4,|AD|=2,所以∠ABD=30°, 所以|EF|=|BF|=, 所以焦點F到準線的距離為+1=, 即p=.故選C. 11.(2018·廣西柳州市一模)若雙曲線-=1(a>0,b>0)上存在一點P滿足以|OP|為邊長的正方形的面積等于2ab(其中O為坐標原點),則雙曲線的離心率的取值范圍是( C ) (A)(1,] (B)(1,] (C)[,+∞) (D)[,+∞) 解析:因為正方形的面積為2

10、ab,所以|OP|2=2ab, 又因為|OP|≥a,所以|OP|2≥a2, 所以a2≤2ab,即a≤2b, 所以a2≤4b2,則a2≤4(c2-a2), 得5a2≤4c2,所以≥,得≥, 即e≥.選C. 12.已知不等式組表示平面區(qū)域Ω,過區(qū)域Ω中的任意一個點P,作圓x2+y2=1的兩條切線且切點分別為A,B,當四邊形PAOB的面積最小時,cos∠APB 的值為( B ) (A) (B) (C) (D) 解析:作出平面區(qū)域Ω和單位圓x2+y2=1的圖象如圖所示,設l:x+y-2=0,數(shù)形結合可得S四邊形PAOB=2S△PAO =2××|PA|×1 =|PA|. 又因為

11、|PA|==, 所以當P到原點距離最小時,四邊形PAOB的面積最小,此時PO⊥l,且|PO|==2,故∠APO=,所以∠APB=,cos∠APB=.故選B. 二、填空題 13.(2018·江蘇卷)在平面直角坐標系xOy中,若雙曲線-=1(a>0,b>0)的右焦點F(c,0)到一條漸近線的距離為c,則其離心率的值為    .? 解析:雙曲線的漸近線方程為bx±ay=0,焦點F(c,0)到漸近線的距離d==b. 所以b=c, 所以a==c, 所以e==2. 答案:2 14.(2018·合肥市第一次質(zhì)檢)若雙曲線-=1(a>0,b>0)的一條漸近線被圓x2+y2-6x+5=0所截得

12、的弦的長為2,則該雙曲線的離心率等于    .? 解析:不妨取雙曲線-=1的一條漸近線方程為bx-ay=0,圓x2+y2-6x+5=0的圓心為(3,0),半徑為2, 所以圓心(3,0)到漸近線bx-ay=0的距離d=,又d==, 所以=,化簡得a2=2b2, 所以該雙曲線的離心率 e====. 答案: 15.(2017·天津卷)設拋物線y2=4x的焦點為F,準線為l.已知點C在l上,以C為圓心的圓與y軸的正半軸相切于點A.若∠FAC=120°,則圓的方程為  .? 解析:由y2=4x可得點F的坐標為(1,0),準線l的方程為x=-1.

13、 由圓心C在l上,且圓C與y軸正半軸相切(如圖),可得點C的橫坐標為-1,圓的半徑為1,∠CAO=90°.又因為∠FAC=120°, 所以∠OAF=30°,所以|OA|=, 所以點C的縱坐標為. 所以圓的方程為(x+1)2+(y-)2=1. 答案:(x+1)2+(y-)2=1. 16.(2018·太原市模擬)雙曲線-=1(a>0,b>0)上一點M(-3,4)關于一條漸近線的對稱點恰為雙曲線的右焦點F2,則該雙曲線的標準方程為              .? 解析:由題意知|OF2|=|OM|=5,所以F2(5,0), 即c=5.所以a2+b2=c2=25,① 又-=1,② 所以所以雙曲線的標準方程為-=1. 答案:-=1

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!