湖南省邵陽市中考數(shù)學(xué)提分訓(xùn)練 軸對稱(含解析)
《湖南省邵陽市中考數(shù)學(xué)提分訓(xùn)練 軸對稱(含解析)》由會員分享,可在線閱讀,更多相關(guān)《湖南省邵陽市中考數(shù)學(xué)提分訓(xùn)練 軸對稱(含解析)(18頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、湖南省邵陽市中考數(shù)學(xué)提分訓(xùn)練 軸對稱(含解析) 一、選擇題 1.在以下永潔環(huán)保、綠色食品、節(jié)能、綠色環(huán)保四個標(biāo)志中,是軸對稱圖形的是( ??) A.??????????????????B.??????????????????C.??????????????????D.? 2.小狗皮皮看到鏡子里的自己,覺得很奇怪,此時它所看到的全身像是( ??) A.????????????????????????B.?????????????????????????C.?????????????????????????D.? 3.如圖,正方形OABC對角線交點為D,過D
2、的直線分別交AB,OC于E,F(xiàn),已知點E關(guān)于y軸的對稱點坐標(biāo)為(﹣ ,2),則圖中陰影部分的面積是(?? ) A.?1???????????????????????????????????????????B.?2???????????????????????????????????????????C.?3???????????????????????????????????????????D.?4 4.中國京劇臉譜藝術(shù)是廣大戲曲愛好者非常喜愛的藝術(shù)門類,在國內(nèi)外流行的范圍相當(dāng)廣泛,已經(jīng)被大家公認(rèn)為是漢民族傳統(tǒng)文化的標(biāo)識之一. 下列臉譜中,屬于軸對稱圖形的是(? ?)
3、 A.???????????????????B.???????????????????C.???????????????????D.? 5.如圖,將△ABC沿DE,EF翻折,頂點A,B均落在點O處,且EA與EB重合于線段EO,若∠CDO+∠CFO= ,則∠C的度數(shù)為(?? ) A.?40°???????????????????????????????????????B.?41°???????????????????????????????????????C.?42°???????????????????????????????????????D.?43° 6.如圖,將矩形紙帶A
4、BCD,沿EF折疊后,C,D兩點分別落在C′,D ′的位置,經(jīng)測量得∠EFB=65°,則∠AED′的度數(shù)是(?? ) A.?65°???????????????????????????????????????B.?55°???????????????????????????????????????C.?50°???????????????????????????????????????D.?25° 7.如圖,將∠BAC沿DE向∠BAC內(nèi)折疊,使AD與A′D重合,A′E與AE重合,若∠A=30°,則∠1+∠2=(?? ) A.?50°????????????????????????
5、???????????B.?60°???????????????????????????????????C.?45°???????????????????????????????????D.?以上都不對
8.已知 ABC(AB 6、????????????????????????????????B.???????????????????????????????????????????C.???????????????????????????????????????????D.?
10.如圖,矩形ABCD中,點E在邊AB上,將矩形ABCD沿直線DE折疊,點A恰好落在邊BC的點F處.若AE=5,BF=3,則CD的長是(?? )
A.?7???????????????????????????????????????????B.?8???????????????????????????????????????????C. 7、?9???????????????????????????????????????????D.?10
11.由7個大小相同的正方體搭成的幾何體如圖所示,則以下結(jié)論:①主視圖既是軸對稱圖形,又是中心對稱圖形;??? ②俯視圖是中心對稱圖形;③左視圖不是中心對稱圖形;④俯視圖和左視圖都不是軸對稱圖形其中正確結(jié)論是(??? )
A.?①③?????????????????????????????????????B.?①④?????????????????????????????????????C.?②③?????????????????????????????????????D.?②④
1 8、2.一個數(shù)學(xué)游戲,正六邊形被平均分為6格(其中1格涂有陰影),規(guī)則如下:若第一個正六邊形下面標(biāo)的數(shù)字為a(a為正整數(shù)),則先繞正六邊形的中心順時針旋轉(zhuǎn)a格;再沿某條邊所在的直線l翻折,得到第二個圖形。例如:若第一個正六邊形下面標(biāo)的數(shù)字為2,如圖,則先繞其中心順時針旋轉(zhuǎn)2格;再沿直線l翻折,得到第二個圖形。若第一個正六邊形下面標(biāo)的數(shù)字為4,如圖,按照游戲規(guī)則,得到第二個圖形應(yīng)是(??? )
A.????????????????????B.????????????????????C.????????????????????D.?
二、填空題
13.點P(3, )與點q(b,2)關(guān)于y軸 9、對稱, 則a=________, b=________
14.如圖,在?ABCD中,AB= ,AD=4,將?ABCD沿AE翻折后,點B恰好與點C重合,則折痕AE的長為________.
15.將矩形ABCD按如圖所示的方式折疊,得到菱形AECF,若AB=3,則菱形AECF的周長為________.
16.矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點P,且DP=3.將矩形紙片折疊,使點B與點P重合,折痕所在直線交矩形兩邊于點E,F(xiàn),則EF長為________.
17.如圖,已知四邊形紙片ABCD,現(xiàn)將該紙片剪拼成一個與它面積相等的平行四邊形紙片,如果限定 10、裁剪線最多有兩條,能否做到:________(用“能”或“不能”填空).若“能”,請確定裁剪線的位置,并說明拼接方法;若填“不能”,請簡要說明理由.方法或理由:________.
18.如圖,在直角梯形 中, ∥ , , , , ,點 、 分別在邊 、 上,聯(lián)結(jié) .如果△ 沿直線 翻折,點 與點 恰好重合,那么 的值是________.
19.如圖,把正方形紙片ABCD沿對邊中點所在的直線對折后展開,折痕為MN,再過點B折疊紙片,使點A落在MN上的點F處,折痕為BE.若AB的長為2,則FM的長為________.
20.如圖,將矩形紙片ABCD折疊,使點A與BC邊上的點 重合 11、,折痕為BE,再沿過點E的直線折疊,使點B與AD邊上的點 重合,折痕為EF,連結(jié) , . DC =∠B F,則 的值為________
三、解答題
21.已知A(a+b,1),B(﹣2,2a﹣b),若點A,B關(guān)于x軸對稱,求a,b的值.
22.已知點P(x,y)的坐標(biāo)滿足方程(x+3)2+ =0,求點P分別關(guān)于x軸,y軸以及原點的對稱點坐標(biāo).
23.矩形ABCD中,AB=3 , BC=5.E為CD邊上一點,將矩形沿直線BE折疊,使點C落在AD邊上C’處.求DE的長.
24.如圖,將矩形ABCD 12、沿CE折疊,點B恰好落在邊AD上的點F處,如果 求tan∠DCF的值.
25.如圖,把一張長方形紙片ABCD沿EF折疊,使點C落在點C'處,點D落在點D'處,ED'交BC于點G,已知∠EFG=50°,那么∠DEG和∠BGD'各是多少度?
26.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D為邊CB上的一個動點(點D不與點B重合),過D作DO⊥AB,垂足為O,點B′在邊AB上,且與點B關(guān)于直線DO對稱,連接DB′,AD.
(1)求證:△DOB∽△ACB;
(2)若AD平分∠ 13、CAB,求線段BD的長;
(3)當(dāng)△AB′D為等腰三角形時,求線段BD的長.
答案解析
一、選擇題
1.【答案】B
【解析】 A、此圖案不是軸對稱圖形,故A不符合題意;
B、此圖案是軸對稱圖形,故B符合題意;
C、此圖案不是軸對稱圖形,故C不符合題意;
D、此圖案不是軸對稱圖形,故D不符合題意;
故答案為:B【分析】根據(jù)軸對稱圖形是一定要沿某直線折疊后直線兩旁的部分互相重合,對各選項逐一判斷即可。
2.【答案】A
【解析】 根據(jù)題意可知,小狗和鏡面里的像是關(guān)于鏡面對稱的,
∴小狗與它的像的對應(yīng)點的連線應(yīng)該與鏡面垂直,且對應(yīng)點到鏡面的距離相等 14、,
∴上述四個圖像中,只有A符合要求,其余三個都不符合要求.
故答案為:A.
【分析】根據(jù)鏡面對稱的性質(zhì)可得小狗與它的像的對應(yīng)點的連線應(yīng)該與鏡面垂直,且對應(yīng)點到鏡面的距離相等,根據(jù)這個性質(zhì)即可求解。
3.【答案】B
【解析】 由“E關(guān)于y軸的對稱點坐標(biāo)為(- ,2)”,可得出點E的坐標(biāo)為( ,2),根據(jù)ABCO是正方形,那么A點坐標(biāo)為(0,2),B點坐標(biāo)為(2,2),C點坐標(biāo)為(2,0).
∵AB∥OC,
∴∠BAC=∠OCA,
又∵DA=DC,∠ADE=∠CDF,
∴△ADE≌△CDF,
∴S△ADE=S△CDF ,
∴陰影部分的面積=三角形OCB的面積,即為: 15、2×2÷2=2.
故答案為:B.
【分析】先根據(jù)點E對稱點的坐標(biāo)求得點E的坐標(biāo),從而求得點A的坐標(biāo),進(jìn)而求得B,C,D的坐標(biāo),再證得陰影部分的面積為三角形OCB的面積,即可求得陰影部分的面積.
4.【答案】B
【解析】 A. 不是軸對稱圖形;B. 是軸對稱圖形;C. 不是軸對稱圖形;
D. 不是軸對稱圖形;故答案為:B.
【分析】把一個圖形沿著某一條直線折疊,這個圖形的兩部分能完全重合,那么這個圖形是軸對稱圖形。由定義可知B符合題意。
5.【答案】B
【解析】 如圖,連接AO、BO.
由折疊的性質(zhì)可得EA=EB=EO,即可推出∠AOB=90°,∠OAB+∠OBA= 16、90°,由DO=DA,F(xiàn)O=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=98°,推出2∠DAO+2∠FBO=98°,推出∠DAO+∠FBO=49°,所以∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=139°,再由三角形的內(nèi)角和定理可得∠C=180°﹣(∠CAB+∠CBA)=180°﹣139°=41°,
故答案為:B.
【分析】連接AO、BO.又折疊的性質(zhì)可知EA=EB=EO,從而推出∠AOB=90°,根據(jù)直角三角形兩銳角互余得出∠OAB+∠OBA=90°,根據(jù)等邊對等角得出∠DAO=∠DOA,∠FOB 17、=∠FBO,根據(jù)三角形外角的定理得出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=98°,推出2∠DAO+2∠FBO=98°,推出∠DAO+∠FBO=49°根據(jù)角的和差得出∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=139°,再由三角形的內(nèi)角和即可得出答案。
6.【答案】C
【解析】 :∵EF是折痕
∴∠DEF=∠DEF
∵矩形ABCD
∴AD∥CB
∴∠DEF=∠EFB=65°=∠DEF
∵∠AED=180°-∠DEF-∠DEF=180°-65°-65°=50°
故答案為:C
【分析】根據(jù)折疊的性質(zhì)可得出∠DEF=∠D ' EF,再根 18、據(jù)矩形的性質(zhì)可知AD∥CB,再根據(jù)平行線的性質(zhì),就可求出∠DEF的度數(shù),然后利用平角等于180°,即可求解。
7.【答案】B
【解析】 ∵∠1=180°﹣2∠ADE;∠2=180°﹣2∠AED.
∴∠1+∠2=360°﹣2(∠ADE+∠AED)
=360°﹣2(180°﹣30°)
=60°.
故答案為:B.
【分析】由折疊的性質(zhì)可得∠ADE=∠DE,∠AED=∠ED,所以∠1=180°﹣2∠ADE;∠2=180°﹣2∠AED,所以∠1+∠2=360°﹣2(∠ADE+∠AED)=360°﹣2(180°﹣30°)=60°。
8.【答案】B
【解析】 :A、由作圖可知AB= 19、BP,則BC=BP+PC=AB+PC,因此A不符合題意;
B、連接AP,由作圖可知AP=BP,則BC=BP+PC=AP+PC,因此B符合題意;
C、連接AP,由作圖可知AP=PC,則BC=BP+PC=AP+BP,因此C不符合題意;
D、由作圖可知AC=PC,則BC=PC+BP=AC+BP,因此D不符合題意;
故答案為:B【分析】觀察各選項的作圖,可知BC=PB+PC,再結(jié)合PA+PC=BC,可知PA=PB,因此點P在AB的垂直平分線上,可判斷正確答案。
9.【答案】D
【解析】 :過點A作AH⊥BC于點H,連接BE
在Rt△ABC中,∵AC=4,AB=3,
∴BC=
20、∵點D是BC的中點
∴AD是直角三角形ABC的中線
∴AD=DC=DB=,
∵S△ABC=BC?AH=AB?AC,
∴AH=,
∵AE=AB,DE=DB=DC,
∴AD垂直平分線段BE,△BCE是直角三角形,
∵AD?BO=BD?AH,
∴OB=,
∴BE=2OB=,
在Rt△BCE中,EC=
故答案為:
【分析】過點A作AH⊥BC于點H,連接BE,利用勾股定理求出BC的長,根據(jù)直角三角形斜邊上的中線等于斜邊的一半,求出AD=DC=DB=,再利用△ABC的兩個面積公式,求出AH的長,再根據(jù)三角形一邊上的中線等于這邊的一半,得出這個三角形是直角三角形,再根據(jù)直角三角形的面 21、積公式求出BO的長,從而得出BE的長,利用勾股定理,求解即可。
10.【答案】C
【解析】 :∵B矩形ABCD
∴∠B=90°,AB=DC
∵將矩形ABCD沿直線DE折疊,點A恰好落在邊BC的點F處.
∴AE=EF=5,
在Rt△BEF中,BE=
∴DC=AB=AE+BE=5+4=9
故答案為:C
【分析】根據(jù)矩形的性質(zhì),可得出∠B=90°,AB=DC,再根據(jù)折疊的性質(zhì),可求出EF的長,然后根據(jù)勾股定理求出BE的長,即可求解。
11.【答案】A
【解析】 該幾何體的三視圖如圖所示:
①主視圖既是軸對稱圖形,又是中心對稱圖形;正確.
②俯視圖是中心對稱圖形; 22、錯誤.
③左視圖不是中心對稱圖形;正確.
左視圖是軸對稱圖形,④俯視圖和左視圖都不是軸對稱圖形,錯誤.
故答案為:A.
【分析】首先畫出簡單幾何組合體的三視圖,然后根據(jù)把一個圖形沿著一條直線折疊,直線兩旁的部分能完全重合的圖形就是軸對稱圖形;把一個圖形繞著某一點旋轉(zhuǎn)180°后能與自身重合的圖形就是中心對稱圖形,根據(jù)定義即可一一作出判斷。
12.【答案】A
【解析】 第一個正六邊形下面標(biāo)的數(shù)字為4,先繞其中心順時針旋轉(zhuǎn)4格,
旋轉(zhuǎn)后的圖形是 ,關(guān)于直線 的對稱圖形是 .
故答案為:A.
【分析】根據(jù)游戲規(guī)則,第一個正六邊形下面標(biāo)的數(shù)字為4,先繞其中心順時針旋轉(zhuǎn)4格,根據(jù)旋轉(zhuǎn) 23、的性質(zhì)得出旋轉(zhuǎn)后的圖形,再根據(jù)翻折的性質(zhì)即可得出沿直線l翻折后得到的圖形。
二、填空題
13.【答案】2;-3
【解析】 ? :∵P(3, a )與點q(b,2)關(guān)于y軸對稱
∴a=2?? ,b=-3? ,
【分析】根據(jù)關(guān)于y軸對稱的點橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變,即可得出答案。
14.【答案】3.
【解析】 由點B恰好與點C重合,可知AE垂直平分BC,根據(jù)勾股定理計算AE的長為 = =3.
故答案為:3.
【分析】由折疊的性質(zhì)可得,AEBC,所以在直角三角形ABE中,由勾股定理可求得AE=.
15.【答案】2
【解析】 根據(jù)折疊圖形可得∠BCE=∠OCE 24、,根據(jù)菱形的性質(zhì)可得∠FCO=∠ECO,則∠FCO=∠ECO=∠BCE,根據(jù)矩形的性質(zhì)可得∠FCO=∠ECO=∠BCE=30°,則CE=2BE,根據(jù)菱形性質(zhì)可得AE=CE=2BE,∵AB=3,∴AE+BE=2BE+BE=3,則BE=1,則AE=2.
【分析】由折疊的性質(zhì)可得∠BCE=∠OCE,根據(jù)菱形的性質(zhì)可得∠FCO=∠ECO,則∠FCO=∠ECO=∠BCE,根據(jù)矩形的性質(zhì)可得∠FCO=∠ECO=∠BCE=30°,則CE=2BE,根據(jù)菱形性質(zhì)可得AE=CE=2BE,所以結(jié)合已知可得AE+BE=2BE+BE=3,則BE=1,則AE=2.
16.【答案】
【解析】 根據(jù)P點的不同位置,此題 25、分兩種情況計算:①點P在CD上;②點P在AD上.①點P在CD上時,如圖1:
∵PD=3,CD=AB=9,
∴CP=6,
∵EF垂直平分PB,
∴四邊形PFBE是鄰邊相等的矩形即正方形,EF過點C,
∵BF=BC=6,
∴由勾股定理求得EF= ;
②點P在AD上時,如圖2:先建立相似三角形,過E作EQ⊥AB于Q,
∵PD=3,AD=6,
∴AP=3,AB=9,
由勾股定理求得PB= =3 ,
∵EF垂直平分PB,
∴∠1=∠2(同角的余角相等),
又∵∠A=∠EQF=90°,
∴△ABP∽△EFQ(兩角對應(yīng)相等,兩三角形相似),
∴對應(yīng)線段成比例: ,代入相 26、應(yīng)數(shù)值: ,
∴EF=2 .
綜上所述:EF長為6 或2 .
【分析】分兩種情況:如圖1,當(dāng)點P在CD上時,由折疊的性質(zhì)得到四邊形PFBE是正方形,EF過點C,根據(jù)勾股定理即可得到結(jié)果;如圖2當(dāng)點P在AD上時,過E作EQ⊥AB于Q,根據(jù)勾股定理求出PB的長,可證明△ABP∽△EFQ,列比例式即可得到結(jié)果。
17.【答案】能;取四邊形紙片ABCD各邊的中點E、F、G、H,連接EG、FH,則EG、FH為裁剪線,將2繞H旋轉(zhuǎn)180°、4繞G旋轉(zhuǎn)180°,4沿BD方向平移,使B與D重合.
【解析】 能做到,方法如下:如圖,
取四邊形紙片ABCD各邊的中點E、F、G、H,連接EG、F 27、H,則EG、FH為裁剪線,將2繞H旋轉(zhuǎn)180°、4繞G旋轉(zhuǎn)180°,4沿BD方向平移,是B與D重合,拼成的四邊形滿足條件.
故答案為:能;如圖,取四邊形紙片ABCD各邊的中點E、F、G、H,連接EG、FH,則EG、FH為裁剪線,將2繞H旋轉(zhuǎn)180°、4繞G旋轉(zhuǎn)180°,4沿BD方向平移,使B與D重合.
【分析】取四邊形紙片ABCD各邊的中點E、F、G、H,連接EG、FH,則EG、FH為裁剪線把四邊形分成四部分,根據(jù)平移、旋轉(zhuǎn)的性質(zhì)和平行四邊形的判定剪拼即可。
18.【答案】
【解析】 延長AD交FE于點G,EF與AC交于點H,如圖,
在Rt△ABC中,AB=4,AC=8
∴AC 28、= ?
∴CH=AH= ?
由EF⊥AC得∠FHC=90°
∵∠ABC=90°
∴∠FHC=∠ABC
∴△CFH∽△CAB
∴ ?
∴CF=5
∵AD∥BC
∴∠GAC=∠FCA
在△AHG和△CHF中
?
∴△AHG≌△CHF
∴AG=CF=5
∵AD=3
∴DG=AG-AD=5-3=2
∵AD∥BC
∴△DGE∽△CFE
∴ ?
故答案為:
【分析】延長AD交FE于點G,EF與AC交于點H,根據(jù)勾股定理得出AC的長,根據(jù)折疊的性質(zhì)得出CH=AH,及他們的長度,EF⊥AC,從而判斷出△CFH∽△CAB,根據(jù)相似三角形對應(yīng)邊成比例得出CF∶CA=CH∶ 29、CB,從而求出CF的長度,根據(jù)二直線平行,內(nèi)錯角相等得出∠GAC=∠FCA,用ASA判斷出△AHG≌△CHF,根據(jù)全等三角形對應(yīng)邊相等得出AG=CF=5進(jìn)而得出DG,再根據(jù)平行于三角形一邊的直線,截其它兩百年的延長線,所截得的三角形,與原三角形相似,再根據(jù)相似三角形對應(yīng)邊成比例,即可得出答案。
19.【答案】
【解析】 :∵正方形ABCD,AB=2,第一次折疊,折痕為MN,第二次折痕為BE
∴∠BMF=90°,BF=AB=2,BM=BC=×2=1
在Rt△BMF中,MF=
故答案為:
【分析】根據(jù)折疊的性質(zhì)求出BF、BM的長及證出△BMF是直角三角形,再利用勾股定理求出FM的長即可 30、。
20.【答案】
【解析】 :如圖,設(shè)EF與BB交于點O
∵矩形紙片ABCD折疊,使點A與BC邊上的點 A ′ 重合,折痕為BE
∴AB=AB,∠A=∠ABA′ ,∠EA′ B=90°
∴四邊形ABA′ E是正方形,
設(shè)AB=x,則BE=x
∵再沿過點E的直線折疊,使點B與AD邊上的點 B ′ 重合,折痕為EF
∴易證四邊形B′EBF是菱形,
∴BF=BE=B′E=x,B′ B⊥EF,
∴∠BB′ F=∠FBB′ ,∠FOB=90°
∵∠DCB′ =∠BB′ F
∴∠DCB′ =∠FBB′
∵∠1+∠FEA′=90°,∠1+FBO=90°
∴∠FEA′=∠FB 31、O=∠DCB′
在△CB′D和△EFA′中
∴△CB′D≌△EFA′(ASA)
∴DB′=A′F
∴A′F=BF-BA′=x-x
∴AD=AE+B′E+B′D=x+x+x-x=2x
∴
故答案為:【分析】根據(jù)矩形紙片ABCD折疊,使點A與BC邊上的點 A ′ 重合,折痕為BE,可證得四邊形ABA′ E是正方形,設(shè)AB=x,則BE=x,再根據(jù)再沿過點E的直線折疊,使點B與AD邊上的點 B ′ 重合,折痕為EF,證得易證四邊形B′EBF是菱形,求出B′E、A′F的長,然后證明△CB′D≌△EFA′,可證得DB′=A′F,根據(jù)AD=AE+B′E+B′D,可得出結(jié)果。
三、解答題
32、
21.【答案】解:由題意得: , 解得: ,
答:a的值為﹣1,b的值為﹣1
【解析】【分析】根據(jù)關(guān)于x軸的對稱點的坐標(biāo)特點:橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù)可得答案.
22.【答案】解:由題意,得
x+3=0,y+4=0,
解得x=﹣3,y=﹣4,
P點的坐標(biāo)為(﹣3,﹣4),
點P關(guān)于x軸,y軸以及原點的對稱點坐標(biāo)分別為(﹣3,4),(3,﹣4),(3,4).
【解析】【分析】根據(jù)關(guān)于原點對稱的點橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù);關(guān)于x軸對稱的點橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對稱的點橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等可得答案.
23.【答案】DE=
【解析 33、】【解答】∵矩形ABCD
∴AD=BC=5,AB=CD=3,∠A=∠D=90°
∵矩形沿直線BE折疊,使點C落在AD邊上C’
∴CE=CE,BC=BC=5
在Rt△ABC中AC=
∴CD=5-4=1
設(shè)DE=x,則CE=CE=3-x,
在Rt△CDE中,
CD2+DE2=CE2
1+x2=(3-x)2
解之:x=
【分析】根據(jù)矩形的性質(zhì)得出AD=BC=5,AB=CD=3,∠A=∠D=90°, 再根據(jù)折疊的性質(zhì)得出CE=CE,BC=BC=5,利用勾股定理在Rt△ABC中求出AC的長,然后在Rt△CDE,根據(jù)勾股定理求出答案即可。
24.【答案】解:∵四邊形ABCD是矩形, 34、∴AB=CD,∠D=90°.∵將矩形ABCD沿CE折疊,點B恰好落在邊AD上的點F處,∴CF=BC.又∵? =? ,∴? = .
在Rt△CDF中,設(shè)CD=2x(x>0),則CF=3x,∴DF= =x.
∴tan ∠DCF=
【解析】【分析】折疊以后,BC=CF,根據(jù),在Rt△CDF中,可設(shè)CD=2x(x>0),則CF=3x,由勾股定理求出DF,再根據(jù)正切函數(shù)的定義求出tan ∠DCF。
25.【答案】解:∵四邊形ABCD是長方形,
∴AD∥BC,
∴∠DEF=∠EFG=50°,∠DEG+∠EGF=180°,
由折疊的性質(zhì)可知∠D'EF=∠DEF=50°,
∴∠DEG=50° 35、+50°=100°,
∴∠EGF=180°-∠DEG=180°-100°=80°,
∵∠BGD'=∠EGF
∴∠BGD'=80°
【解析】【分析】根據(jù)矩形的性質(zhì)及平行線的性質(zhì),可證得∠DEF=∠EFG=50°,∠DEG+∠EGF=180°,再根據(jù)折疊的性質(zhì)可證∠D'EF=∠DEF,然后求出∠DEG、∠EGF的度數(shù),然后根據(jù)對頂角相等,可得出結(jié)果。
26.【答案】(1)證明:∵DO⊥AB,∴∠DOB=90°,
∴∠ACB=∠DOB=90°,
又∵∠B=∠B.∴△DOB∽△ACB??
(2)解:∵AD 平分∠CAB,DC⊥AC,DO⊥AB,
∴DO=DC,
在 Rt△ABC 36、 中,AC=6,BC=,8,∴AB=10,
∵△DOB∽△ACB,
∴DO∶BO∶BD=AC∶BC∶AB=3∶4∶5,
設(shè)BD=x,則DO=DC= x,BO= x,
∵CD+BD=8,∴ x+x=8,解得x=,5,即:BD=5??
(3)解:∵點B 與點B′關(guān)于直線DO 對稱,∴∠B=∠OB′D,
BO=B′O= x,BD=B′D=x,
∵∠B 為銳角,∴∠OB′D 也為銳角,∴∠AB′D 為鈍角,
∴當(dāng)△AB′D 是等腰三角形時,AB′=DB′,
∵AB′+B′O+BO=10,
∴x+ x+ x=10,解得x= ,即BD= ,
∴當(dāng)△AB′D 為等腰三角形時,BD= . 37、?
【解析】【分析】(1)根據(jù)垂直的定義得出∠DOB=90°,根據(jù)等量代換得出∠ACB=∠DOB=90°,又∠B=∠B,根據(jù)兩個角對應(yīng)相等的兩個三角形相似得出△DOB∽△ACB;
(2)根據(jù)角平分線上的點到角兩邊的距離相等得出DO=DC,在 Rt△ABC 中,根據(jù)勾股定理得出AB=10,根據(jù)相似三角形對應(yīng)邊成比例得出DO∶BO∶BD=AC∶BC∶AB=3∶4∶5,設(shè)BD=x,則DO=DC=?x,BO=?x,根據(jù)線段的和差,由CD+BD=8,列出方程,求解即可得出答案;
(3)根據(jù)軸對稱的性質(zhì)得出∠B=∠OB′D,BO=B′O=?x,BD=B′D=x,,根據(jù)等腰三角形的角來判定當(dāng)△AB′D 是等腰三角形時,AB′=DB′,由AB′+B′O+BO=10,列出關(guān)于x的方程,求解得出x的值,從而得出答案。
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年防凍教育安全教育班會全文PPT
- 2025年寒假安全教育班會全文PPT
- 初中2025年冬季防溺水安全教育全文PPT
- 初中臘八節(jié)2024年專題PPT
- 主播直播培訓(xùn)提升人氣的方法正確的直播方式如何留住游客
- XX地區(qū)機(jī)關(guān)工委2024年度年終黨建工作總結(jié)述職匯報
- 心肺復(fù)蘇培訓(xùn)(心臟驟停的臨床表現(xiàn)與診斷)
- 我的大學(xué)生活介紹
- XX單位2024年終專題組織生活會理論學(xué)習(xí)理論學(xué)習(xí)強(qiáng)黨性凝心聚力建新功
- 2024年XX單位個人述職述廉報告
- 一文解讀2025中央經(jīng)濟(jì)工作會議精神(使社會信心有效提振經(jīng)濟(jì)明顯回升)
- 2025職業(yè)生涯規(guī)劃報告自我評估職業(yè)探索目標(biāo)設(shè)定發(fā)展策略
- 2024年度XX縣縣委書記個人述職報告及2025年工作計劃
- 寒假計劃中學(xué)生寒假計劃安排表(規(guī)劃好寒假的每個階段)
- 中央經(jīng)濟(jì)工作會議九大看點學(xué)思想強(qiáng)黨性重實踐建新功