(全國通用版)2022高考數(shù)學(xué)二輪復(fù)習(xí) 板塊四 考前回扣 回扣5 概率與統(tǒng)計學(xué)案 文
《(全國通用版)2022高考數(shù)學(xué)二輪復(fù)習(xí) 板塊四 考前回扣 回扣5 概率與統(tǒng)計學(xué)案 文》由會員分享,可在線閱讀,更多相關(guān)《(全國通用版)2022高考數(shù)學(xué)二輪復(fù)習(xí) 板塊四 考前回扣 回扣5 概率與統(tǒng)計學(xué)案 文(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、(全國通用版)2022高考數(shù)學(xué)二輪復(fù)習(xí) 板塊四 考前回扣 回扣5 概率與統(tǒng)計學(xué)案 文 1.牢記概念與公式 (1)古典概型的概率計算公式 P(A)=. (2)互斥事件的概率計算公式 P(A∪B)=P(A)+P(B). (3)對立事件的概率計算公式 P()=1-P(A). (4)幾何概型的概率計算公式 P(A)=. 2.抽樣方法 簡單隨機抽樣、分層抽樣、系統(tǒng)抽樣. (1)從容量為N的總體中抽取容量為n的樣本,則每個個體被抽到的概率都為. (2)分層抽樣實際上就是按比例抽樣,即按各層個體數(shù)占總體的比確定各層應(yīng)抽取的樣本容量. 3.統(tǒng)計中四個數(shù)據(jù)特征 (1)眾數(shù):在樣本數(shù)
2、據(jù)中,出現(xiàn)次數(shù)最多的那個數(shù)據(jù). (2)中位數(shù):在樣本數(shù)據(jù)中,將數(shù)據(jù)按大小排列,位于最中間的數(shù)據(jù).如果數(shù)據(jù)的個數(shù)為偶數(shù),就取中間兩個數(shù)據(jù)的平均數(shù)作為中位數(shù). (3)平均數(shù):樣本數(shù)據(jù)的算術(shù)平均數(shù), 即=(x1+x2+…+xn). (4)方差與標準差 方差:s2=[(x1-)2+(x2-)2+…+(xn-)2]. 標準差: s=. 4.線性回歸 線性回歸方程=x+一定過樣本點的中心(,). 5.獨立性檢驗 利用隨機變量K2=來判斷“兩個分類變量有關(guān)系”的方法稱為獨立性檢驗.如果K2的觀測值k越大,說明“兩個分類變量有關(guān)系”的可能性越大. 1.應(yīng)用互斥事件的概率加法公式,一
3、定要注意首先確定各事件是否彼此互斥,然后求出各事件分別發(fā)生的概率,再求和. 2.正確區(qū)別互斥事件與對立事件的關(guān)系:對立事件是互斥 事件,是互斥中的特殊情況,但互斥事件不一定是對立事件,“互斥”是“對立”的必要不充分條件. 3.混淆頻率分布條形圖和頻率分布直方圖,誤把頻率分布直方圖縱軸的幾何意義當成頻率,導(dǎo)致樣本數(shù)據(jù)的頻率求錯. 1.某學(xué)校有男學(xué)生400名,女學(xué)生600名.為了解男、女學(xué)生在學(xué)習(xí)興趣與業(yè)余愛好方面是否存在顯著差異,擬從全體學(xué)生中抽取男學(xué)生40名,女學(xué)生60名進行調(diào)查,則這種抽樣方法是( ) A.抽簽法 B.隨機數(shù)法 C.系統(tǒng)抽樣法 D.分層抽樣法 答案
4、 D 解析 總體由男生和女生組成,比例為400∶600=2∶3,所抽取的比例也是2∶3,故擬從全體學(xué)生中抽取100名學(xué)生進行調(diào)查,采用的抽樣方法是分層抽樣法,故選D. 2.200輛汽車通過某一段公路時的時速的頻率分布直方圖如圖所示,則時速的眾數(shù),中位數(shù)的估計值為( ) A.62,62.5 B.65,62 C.65,63.5 D.65,65 答案 D 解析 選出直方圖中最高的矩形求出其底邊的中點即為眾數(shù);求出從左邊開始小矩形的面積和為0.5對應(yīng)的橫坐標即為中位數(shù).最高的矩形為第三個矩形,所以時速的眾數(shù)為65;前兩個矩形的面積為(0.01+0.02)×10=0.3,由于0
5、.5-0.3=0.2,則×10=5,∴中位數(shù)為60+5=65.故選D. 3.同時投擲兩枚硬幣一次,那么互斥而不對立的兩個事件是( ) A.“至少有1個正面朝上”,“都是反面朝上” B.“至少有1個正面朝上”,“至少有1個反面朝上” C.“恰有1個正面朝上”,“恰有2個正面朝上” D.“至少有1個反面朝上”,“都是反面朝上” 答案 C 解析 同時投擲兩枚硬幣一次,在A中,“至少有1個正面朝上”和“都是反面朝上”不能同時發(fā)生,且“至少有1個正面朝上”不發(fā)生時,“都是反面朝上”一定發(fā)生,故A中兩個事件是對立事件;在B中,當兩枚硬幣恰好一枚正面朝上,一枚反面朝上時,“至少有1個正面朝上
6、”,“至少有1個反面朝上”能同時發(fā)生,故B中兩個事件不是互斥事件;在C中,“恰有1個正面朝上”,“恰有2個正面朝上”不能同時發(fā)生,且其中一個不發(fā)生時,另一個有可能發(fā)生也有可能不發(fā)生,故C中的兩個事件是互斥而不對立的兩個事件;在D中,當兩枚硬幣同時反面朝上時,“至少有1個反面朝上”,“都是反面朝上”能同時發(fā)生,故D中兩個事件不是互斥事件.故選C. 4.采用系統(tǒng)抽樣方法從學(xué)號為1到50的50名學(xué)生中選取5名參加測試,則所選5名學(xué)生的學(xué)號可能是( ) A.1,2,3,4,5 B.5,26,27,38,49 C.2,4,6,8,10 D.5,15,25,35,45 答案 D 解析
7、采用系統(tǒng)抽樣的方法時,即將總體分成均衡的若干部分,分段的間隔要求相等,間隔一般為總體的個數(shù)除以樣本容量,據(jù)此即可得到答案.采用系統(tǒng)抽樣間隔為=10,只有D答案中的編號間隔為10.故選D. 5.甲、乙兩人下棋,兩人下成和棋的概率是,甲獲勝的概率是,則甲不輸?shù)母怕蕿? ) A. B. C. D. 答案 A 解析 甲不輸?shù)母怕蕿椋?故選A. 6.A是圓上固定的一定點,在圓上其他位置任取一點 B,連接A,B兩點,它是一條弦,它的長度大于等于半徑長度的概率為( ) A. B. C. D. 答案 A 解析 在圓上其他位置任取一點B,設(shè)圓的半徑為R,則B點位置所有情
8、況對應(yīng)的弧長為圓的周長2πR,其中滿足條件AB的長度大于等于半徑長度的對應(yīng)的弧長為·2πR,則弦AB的長度大于等于半徑長度的概率P==.故選A. 7.投擲兩顆骰子,得到其向上的點數(shù)分別為m和n,則復(fù)數(shù)(m+ni)(n-mi)為實數(shù)的概率是( ) A. B. C. D. 答案 C 解析 投擲兩顆骰子,得到其向上的點數(shù)分別為m和n,記作(m,n),共有6×6=36(種)結(jié)果.(m+ni)(n-mi)=2mn+(n2-m2)i為實數(shù),應(yīng)滿足m=n,有6種情況, 所以所求概率為=,故選C. 8.一個袋子中有5個大小相同的球,其中3個白球,2個黑球,現(xiàn)從袋中任意取出一個球,取出后
9、不放回,然后再從袋中任意取出一個球,則第一次為白球、第二次為黑球的概率為( ) A. B. C. D. 答案 B 解析 設(shè)3個白球分別為a1,a2,a3,2個黑球分別為b1,b2,則先后從中取出2個球的所有可能結(jié)果為(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2),(a2,a1),(a3,a1),(b1,a1),(b2,a1),(a3,a2),(b1,a2),(b2,a2),(b1,a3),(b2,a3),(b2,b1),共20種.其中滿足第一次為白球、第二次為黑球的
10、有(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),共6種,故所求概率為=. 9.為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計數(shù)據(jù)表: 收入x(萬元) 8.2 8.6 10.0 11.3 11.9 支出y(萬元) 6.2 7.5 8.0 8.5 9.8 根據(jù)上表可得線性回歸方程=x+,其中=0.76,=-.據(jù)此估計,該社區(qū)一戶年收入為15萬元的家庭的年支出為( ) A.11.4萬元 B.11.8萬元 C.12.0萬元 D.12.2萬元 答案 B 解析 由題意知
11、,==10, ==8, ∴ =8-0.76×10=0.4, ∴線性回歸方程 =0.76x+0.4, ∴當x=15時, =0.76×15+0.4=11.8(萬元). 10.在區(qū)間[-π,π]內(nèi)隨機取出兩個數(shù)分別記為a,b,則函數(shù)f(x)=x2+2ax-b2+π2有零點的概率為( ) A.1- B.1- C.1- D.1- 答案 B 解析 由函數(shù)f(x)=x2+2ax-b2+π2有零點, 可得Δ=(2a)2-4(-b2+π2)≥0, 整理得a2+b2≥π2, 如圖所示, (a,b)可看成坐標平面上的點, 試驗的全部結(jié)果構(gòu)成的區(qū)域為Ω={(a,b)|-π≤a
12、≤π,-π≤b≤π}, 其面積SΩ=(2π)2=4π2. 事件A表示函數(shù)f(x)有零點, 所構(gòu)成的區(qū)域為M={(a,b)|a2+b2≥π2}, 即圖中陰影部分,其面積為SM=4π2-π3, 故P(A)===1-,故選B. 11.某班運動隊由足球運動員18人、籃球運動員12人、乒乓球運動員6人組成(每人只參加一項),現(xiàn)從這些運動員中抽取一個容量為n的樣本,若分別采用系統(tǒng)抽樣法和分層抽樣法,則都不用剔除個體;當樣本容量為n+1時,若采用系統(tǒng)抽樣法,則需要剔除1個個體,那么樣本容量n為________. 答案 6 解析 總體容量為6+12+18=36.當樣本容量為n時,由題意可知,系
13、統(tǒng)抽樣的抽樣距為,分層抽樣的抽樣比是,則采用分層抽樣法抽取的乒乓球運動員人數(shù)為6×=,籃球運動員人數(shù)為12×=,足球運動員人數(shù)為18×=,可知n應(yīng)是6的倍數(shù),36的約數(shù),故n=6,12,18.當樣本容量為n+1時,剔除1個個體,此時總體容量為35,系統(tǒng)抽樣的抽樣距為,因為必須是整數(shù),所以n只能取6,即樣本容量n為6. 12.已知樣本9,10,11,x,y的平均數(shù)是10,標準差是,則xy=________. 答案 96 解析 根據(jù)平均數(shù)及方差的計算公式,可得9+10+11+x+y=10×5,即x+y=20,因為標準差為,方差為2, 所以[(9-10)2+(10-10)2+(11-10)2
14、+(x-10)2+(y-10)2]=2,即(x-10)2+(y-10)2=8, 解得x=8,y=12或x=12,y=8,則xy=96. 13.已知x,y的取值如表所示: x 0 1 3 4 y 2.2 4.3 4.8 6.7 從散點圖分析,y與x線性相關(guān),且=0.95x+,則=________. 答案 2.6 解析 根據(jù)表中數(shù)據(jù)得=2,=4.5,又由線性回歸方程知,其斜率為0.95, ∴截距=4.5-0.95×2=2.6. 14.在區(qū)間[1,5]和[2,4]內(nèi)分別取一個數(shù),記為a,b,則方程+=1表示焦點在x軸上且離心率小于的橢圓的概率為________.
15、 答案 解析 當方程+=1表示焦點在x軸上且離心率小于的橢圓時, 有 即化簡得 又a∈[1,5],b∈[2,4],畫出滿足不等式組的平面區(qū)域,如圖陰影部分所示,求得陰影部分面積為 S陰影=×(1+3)×2-×1×=. 故P==. 15.如圖是某市2017年3月1日至16日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)(AQI)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染. (1)若某人隨機選擇3月1日至3月14日中的某一天到達該市,到達后停留3天(到達當日算1天),求此人停留期間空氣重度污染的天數(shù)為1的概率; (2)若某人隨機選擇3月7日至3月12日中的
16、2天到達該市,求這2天中空氣質(zhì)量恰有1天是重度污染的概率. 解 (1)設(shè)Ai表示事件“此人于3月i日到達該市”(i=1,2,…,14). 依題意知,P(Ai)=,且Ai∩Aj=?(i≠j). 設(shè)B為事件“此人停留期間空氣重度污染的天數(shù)為1”,則B=A3∪A5∪A6∪A7∪A10, 所以P(B)=P(A3)∪P(A5)∪P(A6)∪P(A7)∪P(A10)=, 即此人停留期間空氣重度污染的天數(shù)為1的概率為. (2)記3月7日至3月12日中重度污染的2天為E,F(xiàn),另外4天記為a,b,c,d,則6天中選2天到達的基本事件如下:(a,b),(a,c),(a,d),(a,E),(a,F(xiàn)),(
17、b,c),(b,d),(b,E),(b,F(xiàn)),(c,d),(c,E),(c,F(xiàn)),(d,E),(d,F(xiàn)),(E,F(xiàn)),共15種,其中2天恰有1天是空氣質(zhì)量重度污染包含(a,E),(a,F(xiàn)),(b,E),(b,F(xiàn)),(c,E),(c,F(xiàn)),(d,E),(d,F(xiàn))這8個基本事件,故所求事件的概率為. 16.(2017·全國Ⅱ)海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下: (1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg,估計A的概率; (2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的
18、把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān); 箱產(chǎn)量<50 kg 箱產(chǎn)量≥50 kg 總計 舊養(yǎng)殖法 新養(yǎng)殖法 總計 (3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進行比較. 附: P(K2≥k0) 0.050 0.010 0.001 k0 3.841 6.635 10.828 K2=. 解 (1)舊養(yǎng)殖法的箱產(chǎn)量低于50 kg的頻率為 (0.012+0.014+0.024+0.034+0.040)×5=0.62. 因此,事件A的概率估計值為0.62. (2)根據(jù)箱產(chǎn)量的頻率分布直方圖得列聯(lián)表 箱產(chǎn)量<50 kg 箱產(chǎn)量≥50 kg 總計 舊養(yǎng)殖法 62 38 100 新養(yǎng)殖法 34 66 100 總計 96 104 200 K2的觀測值k=≈15.705. 由于15.705>6.635,故有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān). (3)箱產(chǎn)量的頻率分布直方圖表明:新養(yǎng)殖法的箱產(chǎn)量平均值(或中位數(shù))在50 kg到55 kg之間,舊養(yǎng)殖法的箱產(chǎn)量平均值(或中位數(shù))在45 kg到50 kg之間,且新養(yǎng)殖法的箱產(chǎn)量分布集中程度較舊養(yǎng)殖法的箱產(chǎn)量分布集中程度高,因此,可以認為新養(yǎng)殖法的箱產(chǎn)量較高且穩(wěn)定,從而新養(yǎng)殖法優(yōu)于舊養(yǎng)殖法.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案