《(湖南專用)2020高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)(八)配套作業(yè) 理 (解析版)》由會員分享,可在線閱讀,更多相關(guān)《(湖南專用)2020高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)(八)配套作業(yè) 理 (解析版)(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、專題限時集訓(xùn)(八)
[第8講 平面向量及向量的應(yīng)用]
(時間:45分鐘)
1.設(shè)向量a=(1,0),b=,則下列結(jié)論正確的是( )
A.|a|=|b| B.a(chǎn)·b=
C.a(chǎn)∥b D.a(chǎn)-b與b垂直
2.已知e1,e2是兩夾角為120°的單位向量,a=3e1+2e2,則|a|等于( )
A.4 B.
C.3 D.
3.若向量a,b滿足|a|=1,|b|=,且a⊥(a+b),則a與b的夾角為( )
A. B.
C. D.
4.已知向量a=(1,1),2a+b=(4,2),則向量a,b的
2、夾角的余弦值為( )
A. B.-
C. D.-
5.定義:|a×b|=|a||b|sinθ,其中θ為向量a與b的夾角,若|a|=2,|b|=5,a·b=-6,則|a×b|等于( )
A.-8 B.8
C.-8或8 D.6
6.已知兩點A(1,0),B(1,),O為坐標(biāo)原點,點C在第二象限,且∠AOC=120°,設(shè)=-2+λ(λ∈R),則λ等于( )
A.-1 B.2 C.1 D.-2
7.兩個非零向量,不共線,且=m,=n(m,n>0),直線PQ過△OAB的重心,則m,n滿足( )
A.m+n=
B.m=1,n=
C.+=3
D.以上
3、全不對
8.已知在△ABC中,AB=3,∠A=60°,∠A的平分線AD交邊BC于點D,且=+λ(λ∈R),則AD的長為( )
A.2 B.
C.1 D.3
9.如圖8-1,在△ABC中,=,P是線段BN上的一點,若=m+,則實數(shù)m的值為________.
圖8-1
10.設(shè)i,j是平面直角坐標(biāo)系(坐標(biāo)原點為O)內(nèi)分別與x軸,y軸正方向相同的兩個單位向量,且=-2i+j,=4i+3j,則△OAB的面積等于________.
11.已知a=(1,2),b=(1,1),a與a+λb的夾角為銳角,則實數(shù)λ的取值范圍為________.
12.已知向量a=(cosθ,s
4、inθ),θ∈[0,π],向量b=(,-1).
(1)若a⊥b,求θ的值;
(2)若|2a-b|
5、
(1)若|m-n|=,求x的值;
(2)設(shè)f(x)=(m+n)·n,求函數(shù)f(x)的值域.
專題限時集訓(xùn)(八)
【基礎(chǔ)演練】
1.D [解析] =1,=,A不正確;a·b=,B不正確;a=λb時可得1=λ且0=λ,此方程組無解,C不正確;(a-b)·b=,-·,=0,D正確.
2.D [解析] ==.
3.C [解析] 設(shè)a,b夾角為θ,由a⊥(a+b),得a·(a+b)=0,即|a|2+|a|·|b|cosθ=0,代入數(shù)據(jù)解得cosθ=-.又θ∈[0,π],所以θ=.
4.C [解析] a=(1,1),2a+b=(4,2)得b=(2,0),
cos〈a,b〉==
6、,所以選C.
【提升訓(xùn)練】
5.B [解析] 由|a|=2,|b|=5,a·b=-6,得cosθ=-,sinθ=,所以|a×b|=|a|·|b|·sinθ=2×5×=8.
6.C [解析] =-2+λ=-2(1,0)+λ(1,)=(-2+λ,λ).因為∠AOC=120°,所以由tan120°==-,解得λ=1.
7.C [解析] 設(shè)重心為點G,且=t,
所以=+=m+t=m+t
=m(1-t)+nt.
設(shè)OG與AB交于點D,則點D為AB的中點.所以==(+).
故消去t得+=3.故選C.
8.
A [解析] 如圖,過D作AC,AB的平行線,分別交AC,AB于E,F(xiàn),則
7、=+,由=+λ及B,D,C三點共線知AC=3AE,λ=.又AB=3,所以AF=AB=2.由AD是∠A的平分線知,四邊形AEDF是菱形,所以AE=2,||2=(+)2=2+2+2·=12,∴||=2,選A.
9. [解析] ∵=,∴=4,又=m+=m+.由點B,P,N共線可知,m+=1,∴m=.
10.5 [解析] 由題可知||=,||=5,·=-5,所以cos〈,〉==-,sin〈,〉=,所求面積為S=××5×=5.
11.∪ [解析] 由題意可得
即即λ∈∪(0,+∞).
12.解:(1)∵a⊥b,∴cosθ-sinθ=0,得tanθ=.
又θ∈[0,π],∴θ=.
(2)∵2
8、a-b=(2cosθ-,2sinθ+1),
∴|2a-b|2=(2cosθ-)2+(2sinθ+1)2
=8+8=8+8sin.
又θ∈[0,π],∴θ-∈-,,
∴sin∈-,1,
∴|2a-b|2的最大值為16,∴|2a-b|的最大值為4.
又|2a-b|4.
13.解:(1)x+y=(sinB+cosB,sinC+cosC),
∵z∥(x+y),
∴cosB(sinC+cosC)+cosC(sinB+cosB)=0,
整理得tanC+tanB+2=0,
∴tanC+tanB=-2.
(2)證明:∵sinAcosC+3cosAsinC=0,
∴由
9、正、余弦定理得:a·+3××c=0,
∴a2-c2=2b2.
14.解:(1)∵m-n=(cosx-1,sinx-),
由|m-n|=得cos2x-2cosx+1+sin2x-2sinx+3=5,
整理得cosx=-sinx,顯然cosx≠0,∴tanx=-.
∵x∈(0,π),∴x=.
(2)∵m+n=(cosx+1,sinx+),
∴f(x)=(m+n)·n=(cosx+1,sinx+)·(1,)
=cosx+1+sinx+3
=2sinx+cosx+4
=2sinx++4.
∵0