《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時(shí)集訓(xùn)28 數(shù)列的概念與簡單表示法(含解析)理》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時(shí)集訓(xùn)28 數(shù)列的概念與簡單表示法(含解析)理(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、課后限時(shí)集訓(xùn)(二十八)
(建議用時(shí):60分鐘)
A組 基礎(chǔ)達(dá)標(biāo)
一、選擇題
1.?dāng)?shù)列0,1,0,-1,0,1,0,-1,…的一個(gè)通項(xiàng)公式an等于( )
A. B.cos
C.cosπ D.cosπ
[答案] D
2.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2(an-1),則an=( )
A.2n B.2n-1
C.2n D.2n-1
C [當(dāng)n=1時(shí),a1=S1=2(a1-1),可得a1=2,當(dāng)n≥2時(shí),an=Sn-Sn-1=2an-2an-1,所以an=2an-1,所以數(shù)列{an}為等比數(shù)列,公比為2,首項(xiàng)為2,所以an=2n.
2、]
3.?dāng)?shù)列{an}中,a1=1,對于所有的n≥2,n∈N*,都有a1·a2·a3·…·an=n2,則a3+a5=( )
A. B. C. D.
A [由題意知a1·a2=4,a1·a2·a3=9,a1a2a3a4=16,a1a2a3a4a5=25,則a3=,a5=,則a3+a5=,故選A.]
4.已知數(shù)列{an}滿足a1=0,an+1=an+2n-1,則數(shù)列{an}的一個(gè)通項(xiàng)公式為( )
A.a(chǎn)n=n-1 B.a(chǎn)n=(n-1)2
C.a(chǎn)n=(n-1)3 D.a(chǎn)n=(n-1)4
B [由題意知an-an-1=2n-3(
3、n≥2),
則an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=(2n-3)+(2n-5)+…+3+1
==(n-1)2.故選B.]
5.若數(shù)列{an}滿足a1=,an=1-(n≥2,且n∈N*),則a2 018等于( )
A.-1 B. C.1 D.2
A [a1=,a2=1-=-1,a3=1-=2,a4=1-=,….
因此數(shù)列{an}是以3為周期的數(shù)列.
從而a2 018=a2=-1,故選A.]
二、填空題
6.若數(shù)列{an}的前n項(xiàng)和Sn=n2-n,則數(shù)列{an}的通項(xiàng)公式an=________.
n
4、-1 [當(dāng)n=1時(shí),a1=S1=.
當(dāng)n≥2時(shí),an=Sn-Sn-1=n2-n-(n-1)2-(n-1)=-1.
又a1=適合上式,則an=n-1.]
7.在數(shù)列{an}中,a1=1,an=an-1(n≥2),則數(shù)列{an}的通項(xiàng)公式an=________.
[由an=an-1得=,
∴an=××…××a1
=××…××1=.
當(dāng)n=1時(shí),a1=1適合上式.
故an=.]
8.(2019·合肥模擬)已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=2,Sn+1=2Sn-1(n∈N*),則a10=________.
256 [因?yàn)閍1=2,Sn+1=2Sn-1,所以Sn+1-1=2(
5、Sn-1),所以{Sn-1}是等比數(shù)列,且公比為2,所以Sn-1=2n-1,所以Sn=2n-1+1,所以a10=S10-S9=29-28=256.]
三、解答題
9.已知數(shù)列{an}的前n項(xiàng)和為Sn.
(1)若Sn=(-1)n+1·n,求a5+a6及an;
(2)若Sn=3n+2n+1,求an.
[解] (1)因?yàn)閍5+a6=S6-S4=(-6)-(-4)=-2,
當(dāng)n=1時(shí),a1=S1=1,當(dāng)n≥2時(shí),
an=Sn-Sn-1=(-1)n+1·n-(-1)n·(n-1)=(-1)n+1·[n+(n-1)]=(-1)n+1·(2n-1),
又a1也適合此式,所以an=(-1)n+
6、1·(2n-1).
(2)因?yàn)楫?dāng)n=1時(shí),a1=S1=6,
當(dāng)n≥2時(shí),an=Sn-Sn-1=(3n+2n+1)-[3n-1+2(n-1)+1]=2×3n-1+2.
由于a1不適合此式,所以an=
10.已知Sn為正項(xiàng)數(shù)列{an} 的前n項(xiàng)和,且滿足Sn=a+an(n∈N*).
(1)求a1,a2,a3,a4的值;
(2)求數(shù)列{an}的通項(xiàng)公式.
[解] (1)由Sn=a+an(n∈N*),
可得a1=a+a1,解得a1=1;
S2=a1+a2=a+a2,
解得a2=2;
同理a3=3,a4=4.
(2)Sn=a+an,①
當(dāng)n≥2時(shí),Sn-1=a+an-1,②
7、①-②得(an-an-1-1)(an+an-1)=0.
由于an+an-1≠0,所以an-an-1=1,
又由(1)知a1=1,
故數(shù)列{an}是首項(xiàng)為1,公差為1的等差數(shù)列,故an=n.
B組 能力提升
1.已知各項(xiàng)都為正數(shù)的數(shù)列{an}滿足a-an+1an-2a=0,且a1=2,則數(shù)列{an}的通項(xiàng)公式為( )
A.a(chǎn)n=2n-1 B.a(chǎn)n=3n-1
C.a(chǎn)n=2n D.a(chǎn)n=3n
C [∵a-an+1an-2a=0,
∴(an+1+an)(an+1-2an)=0.
∵數(shù)列{an}的各項(xiàng)均為正數(shù),
∴an+1+an>0,
∴an+1-2an=0,
即
8、an+1=2an(n∈N*),
∴數(shù)列{an}是以2為公比的等比數(shù)列.
∵a1=2,∴an=2n.]
2.已知正項(xiàng)數(shù)列{an}中,++…+=,則數(shù)列{an}的通項(xiàng)公式為( )
A.a(chǎn)n=n B.a(chǎn)n=n2
C.a(chǎn)n= D.a(chǎn)n=
B [∵++…+=,
∴++…+=(n≥2),
兩式相減得=-=n(n≥2),∴an=n2(n≥2),①
又當(dāng)n=1時(shí),==1,a1=1,適合①式,∴an=n2,n∈N*.故選B.]
3.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1=3Sn,則an=__________.
[由an+1=3Sn,得an=3S
9、n-1(n≥2),
兩式相減可得an+1-an=3Sn-3Sn-1=3an(n≥2),
∴an+1=4an(n≥2).
∵a1=1,a2=3S1=3≠4a1,
∴數(shù)列{an}是從第二項(xiàng)開始的等比數(shù)列,
∴an=a2qn-2=3×4n-2(n≥2).
故an=]
4.已知數(shù)列{an}的通項(xiàng)公式是an=n2+kn+4.
(1)若k=-5,則數(shù)列中有多少項(xiàng)是負(fù)數(shù)?n為何值時(shí),an有最小值?并求出最小值;
(2)對于n∈N*,都有an+1>an,求實(shí)數(shù)k的取值范圍.
[解] (1)由n2-5n+4<0,
解得1an知該數(shù)列是一個(gè)遞增數(shù)列,
又因?yàn)橥?xiàng)公式an=n2+kn+4,可以看作是關(guān)于n的二次函數(shù),考慮到n∈N*,所以-<,即得k>-3.
所以實(shí)數(shù)k的取值范圍為(-3,+∞).
- 5 -