2021版高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 平面解析幾何 第7講 雙曲線練習(xí) 理 北師大版
《2021版高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 平面解析幾何 第7講 雙曲線練習(xí) 理 北師大版》由會員分享,可在線閱讀,更多相關(guān)《2021版高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 平面解析幾何 第7講 雙曲線練習(xí) 理 北師大版(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第7講 雙曲線 [基礎(chǔ)題組練] 1.“k<9”是“方程+=1表示雙曲線”的( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 解析:選A.因為方程+=1表示雙曲線,所以(25-k)(k-9)<0,所以k<9或k>25, 所以“k<9”是“方程+=1表示雙曲線”的充分不必要條件,故選A. 2.雙曲線-=1(a>0,b>0)的離心率為,則其漸近線方程為( ) A.y=±x B.y=±x C.y=±x D.y=±x 解析:選A.法一:由題意知,e==,所以c=a,所以b==a,所以=,所以該雙曲線的漸近線方程為y=±x=±
2、x,故選A. 法二:由e===,得=,所以該雙曲線的漸近線方程為y=±x=±x,故選A. 3.(2020·廣東揭陽一模)過雙曲線-=1(a>0,b>0)的兩焦點且與x軸垂直的直線與雙曲線的四個交點組成一個正方形,則該雙曲線的離心率為( ) A.-1 B. C. D.2 解析:選B.將x=±c代入雙曲線的方程得y2=?y=±,則2c=,即有ac=b2=c2-a2,由e=,可得e2-e-1=0,解得e=(舍負(fù)).故選B. 4.設(shè)雙曲線-=1(a>0,b>0)的右焦點是F,左、右頂點分別是A1,A2,過F作A1A2的垂線與雙曲線交于B,C兩點.若A1B⊥A2C,則該雙曲線的漸近線方
3、程為( ) A.y=±x B.y=±x C.y=±x D.y=±x 解析:選C. 如圖,不妨令B在x軸上方,因為BC過右焦點F(c,0),且垂直于x軸,所以可求得B,C兩點的坐標(biāo)分別為,.又A1,A2的坐標(biāo)分別為(-a,0),(a,0). 所以=,=. 因為A1B⊥A2C,所以·=0, 即(c+a)(c-a)-·=0, 即c2-a2-=0, 所以b2-=0,故=1,即=1. 又雙曲線的漸近線的斜率為±, 故該雙曲線的漸近線的方程為y=±x. 5.(2020·河北衡水三模)過雙曲線-=1(a>0,b>0)的右焦點F(,0)作斜率為k(k<-1)的直線與雙曲線過第
4、一象限的漸近線垂直,且垂足為A,交另一條漸近線于點B,若S△BOF=(O為坐標(biāo)原點),則k的值為( ) A.- B.-2 C.- D.- 解析:選B.由題意得雙曲線過第一象限的漸近線方程為y=-x,過第二象限的漸近線的方程為y=x,直線FB的方程為y=k(x-),聯(lián)立方程得?x=,所以y=,所以S△BOF=|OF|×|yB|=××=. 令=,得k=-2或k=(舍).故選B. 6.(2020·黃山模擬)過雙曲線E:-=1(a>0,b>0)的左焦點(-,0),作圓(x-)2+y2=4的切線,切點在雙曲線E上,則E的離心率等于( ) A.2 B. C. D. 解析:選B.
5、設(shè)圓的圓心為G,雙曲線的左焦點為F.由圓的方程(x-)2+y2=4,知圓心坐標(biāo)為G(,0),半徑R=2,則FG=2. 設(shè)切點為P, 則GP⊥FP,PG=2,PF=2+2a, 由|PF|2+|PG|2=|FG|2, 即(2+2a)2+4=20, 即(2+2a)2=16,得2+2a=4,a=1,又c=, 所以雙曲線的離心率e==,故選B. 7.設(shè)F為雙曲線-=1(a>0,b>0)的右焦點,若線段OF的垂直平分線與雙曲線的漸近線在第一象限內(nèi)的交點到另一條漸近線的距離為|OF|,則雙曲線的離心率為( ) A.2 B. C.2 D.3 解析:選B.雙曲線-=1(a>0,b>0)
6、的漸近線方程為y=±x,線段OF的垂直平分線為直線x=,將x=代入y=x,則y=,則交點坐標(biāo)為, 點到直線y=-x,即bx+ay=0的距離d==|OF|=,得c=2b=2,即4a2=3c2, 所以雙曲線的離心率e==,故選B. 8.已知雙曲線C:-y2=1,O為坐標(biāo)原點,F(xiàn)為C的右焦點,過F的直線與C的兩條漸近線的交點分別為M,N.若△OMN為直角三角形,則|MN|=( ) A. B.3 C.2 D.4 解析:選B.因為雙曲線-y2=1的漸近線方程為y=±x,所以∠MON=60°.不妨設(shè)過點F的直線與直線y=x交于點M,由△OMN為直角三角形,不妨設(shè)∠OMN=90°,則∠MF
7、O=60°,又直線MN過點F(2,0),所以直線MN的方程為y=-(x-2), 由得所以M,所以|OM|==,所以|MN|=|OM|=3,故選B. 9.(2020·湛江模擬)設(shè)F為雙曲線E:-=1(a,b>0)的右焦點,過E的右頂點作x軸的垂線與E的漸近線相交于A,B兩點,O為坐標(biāo)原點,四邊形OAFB為菱形,圓x2+y2=c2(c2=a2+b2)與E在第一象限的交點是P,且|PF|=-1,則雙曲線E的方程是( ) A.-=1 B.-=1 C.-y2=1 D.x2-=1 解析:選D.雙曲線E:-=1的漸近線方程為y=±x, 因為四邊形OAFB為菱形, 所以對角線互相垂直平分,
8、所以c=2a,∠AOF=60°, 所以=. 則有 解得P. 因為|PF|=-1, 所以+=(-1)2,解得a=1, 則b=, 故雙曲線E的方程為x2-=1. 故選D. 10.已知雙曲線-=1(b>0)的左頂點為A,虛軸長為8,右焦點為F,且⊙F與雙曲線的漸近線相切,若過點A作⊙F的兩條切線,切點分別為M,N,則|MN|=( ) A.8 B.4 C.2 D.4 解析:選D.因為雙曲線-=1(b>0)的虛軸長為8, 所以2b=8,解得b=4, 因為a=3, 所以雙曲線的漸近線方程為y=±x,c2=a2+b2=25,A(-3,0),所以c=5,所以F(5,
9、0), 因為⊙F與雙曲線的漸近線相切, 所以⊙F的半徑為=4, 所以|MF|=4, 因為|AF|=a+c=3+5=8, 所以|AM|==4, 因為S四邊形AMFN=2×|AM|·|MF|=|AF|·|MN|, 所以2××4×4=×8|MN|, 解得|MN|=4,故選D. 11.(2020·開封模擬)過雙曲線C:-=1(a>0,b>0)的右焦點F作圓x2+y2=a2的切線FM(切點為M),交y軸于點P,若=2,則雙曲線的離心率為( ) A. B. C. D.2 解析:選B.設(shè)P(0,3m),由=2,可得點M的坐標(biāo)為,因為OM⊥PF,所以·=-1,所以m2=c2,所以
10、M,由|OM|2+|MF|2=|OF|2,|OM|=a,|OF|=c得,a2++=c2,a2=c2,所以e==,故選B. 12.過雙曲線-=1(a>0,b>0)的左焦點且垂直于x軸的直線與雙曲線交于A,B兩點,D為虛軸上的一個端點,且△ABD為鈍角三角形,則此雙曲線離心率的取值范圍為( ) A.(1,) B.(,) C.(,2) D.(1,)∪(,+∞) 解析:選D.設(shè)雙曲線:-=1(a>0,b>0)的左焦點為F1(-c,0), 令x=-c,可得y=±,可設(shè)A,B. 又設(shè)D(0,b),可得=,=, =,=. 由△ABD為鈍角三角形,可得∠DAB為鈍角或∠ADB為鈍角.
11、當(dāng)∠DAB為鈍角時,可得·<0,即為0-·<0,化為a>b,即有a2>b2=c2-a2.可得c2<2a2,即e=<.又e>1,可得1
12、 14.過雙曲線-=1(a>0,b>0)的左焦點F1作圓x2+y2=a2的切線交雙曲線的右支于點P,且切點為T,已知O為坐標(biāo)原點,M為線段PF1的中點(點M在切點T的右側(cè)),若△OTM的周長為4a,則雙曲線的漸近線方程為________. 解析:連接OT,則OT⊥F1T, 在直角三角形OTF1中,|F1T|===b. 設(shè)雙曲線的右焦點為F2,連接PF2,M為線段F1P的中點,O為坐標(biāo)原點, 所以O(shè)M=PF2, 所以|MO|-|MT|=|PF2|- =(|PF2|-|PF1|)+b=×(-2a)+b=b-a. 又|MO|+|MT|+|TO|=4a,即|MO|+|MT|=3a, 故
13、|MO|=,|MT|=,
由勾股定理可得a2+=,即=,
所以漸近線方程為y=±x.
答案:y=±x
15.已知M(x0,y0)是雙曲線C:-y2=1上的一點,F(xiàn)1,F(xiàn)2是雙曲線C的兩個焦點.若·<0,則y0的取值范圍是________.
解析:由題意知a=,b=1,c=,
設(shè)F1(-,0),F(xiàn)2(,0),
則=(--x0,-y0),=(-x0,-y0).
因為·<0,
所以(--x0)(-x0)+y<0,
即x-3+y<0.
因為點M(x0,y0)在雙曲線C上,
所以-y=1,即x=2+2y,
所以2+2y-3+y<0,所以- 14、,F(xiàn)2是雙曲線C:-=1(a>0,b>0)的左、右兩個焦點,若直線y=x與雙曲線C交于P,Q兩點,且四邊形PF1QF2為矩形,則雙曲線的離心率為________.
解析:由題意可得,矩形的對角線長相等,將直線y=x代入雙曲線C方程,可得x=±,所以·=c,所以2a2b2=c2(b2-a2),即2(e2-1)=e4-2e2,所以e4-4e2+2=0.因為e>1,所以e2=2+,所以e=.
答案:
[綜合題組練]
1.過雙曲線-=1(a>0,b>0)的左焦點F(-c,0)作圓O:x2+y2=a2的切線,切點為E,延長FE交雙曲線于點P,若E為線段FP的中點,則雙曲線的離心率為( )
15、
A. B.
C.+1 D.
解析:選A.
法一:如圖所示,不妨設(shè)E在x軸上方,F(xiàn)′為雙曲線的右焦點,連接OE,PF′,
因為PF是圓O的切線,所以O(shè)E⊥PE,又E,O分別為PF,F(xiàn)F′的中點,所以|OE|=|PF′|,又|OE|=a,所以|PF′|=2a,根據(jù)雙曲線的性質(zhì),|PF|-|PF′|=2a,所以|PF|=4a,所以|EF|=2a,在Rt△OEF中,|OE|2+|EF|2=|OF|2,即a2+4a2=c2,所以e=,故選A.
法二:連接OE,因為|OF|=c,|OE|=a,OE⊥EF,所以|EF|=b,設(shè)F′為雙曲線的右焦點,連接PF′,因為O,E分別為線段FF′,F(xiàn)P 16、的中點,所以|PF|=2b,|PF′|=2a,所以|PF|-|PF′|=2a,所以b=2a,所以e==.
2.(2020·漢中模擬)設(shè)F1(-c,0),F(xiàn)2(c,0)是雙曲線C:-=1(a>0,b>0)的左,右焦點,點P是C右支上異于頂點的任意一點,PQ是∠F1PF2的平分線,過點F1作PQ的垂線,垂足為Q,O為坐標(biāo)原點,則|OQ|( )
A.為定值a
B.為定值b
C.為定值c
D.不確定,隨P點位置變化而變化
解析:選A.延長F1Q,PF2交于點M,則三角形PF1M為等腰三角形,可得Q為F1M的中點,由雙曲線的定義可得|PF1|-|PF2|=|F2M|=2a,由三角形中位線定 17、理可得|OQ|=|F2M|=a,故選A.
3.以橢圓+=1的頂點為焦點,焦點為頂點的雙曲線C,其左、右焦點分別是F1,F(xiàn)2.已知點M的坐標(biāo)為(2,1),雙曲線C上的點P(x0,y0)(x0>0,y0>0)滿足=,則S△PMF1-S△PMF2=( )
A.2 B.4
C.1 D.-1
解析:選A.由題意,知雙曲線方程為-=1,|PF1|-|PF2|=4,由=,可得=,即F1M平分∠PF1F2.
又結(jié)合平面幾何知識可得,△F1PF2的內(nèi)心在直線x=2上,所以點M(2,1)就是△F1PF2的內(nèi)心.
故S△PMF1-S△PMF2=×(|PF1|-|PF2|)×1=×4×1=2.
18、
4.(2019·高考全國卷Ⅰ)已知雙曲線C:-=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,過F1的直線與C的兩條漸近線分別交于A,B兩點.若=,·=0,則C的離心率為________.
解析:通解:因為·=0,所以F1B⊥F2B,如圖.
所以|OF1|=|OB|,所以∠BF1O=∠F1BO,所以∠BOF2=2∠BF1O.因為=,所以點A為F1B的中點,又點O為F1F2的中點,所以O(shè)A∥BF2,所以F1B⊥OA,因為直線OA,OB為雙曲線C的兩條漸近線,所以tan ∠BF1O=,tan ∠BOF2=.因為tan ∠BOF2=tan(2∠BF1O),所以=,所以b2=3a2,所以 19、c2-a2=3a2,即2a=c,所以雙曲線的離心率e==2.
優(yōu)解:因為·=0,所以F1B⊥F2B,
在Rt△F1BF2中,|OB|=|OF2|,所以∠OBF2=∠OF2B,又=,所以A為F1B的中點,所以O(shè)A∥F2B,所以∠F1OA=∠OF2B.又∠F1OA=∠BOF2,所以△OBF2為等邊三角形.由F2(c,0)可得B,因為點B在直線y=x上,所以c=·,所以=,所以e==2.
答案:2
5.已知雙曲線C:-y2=1,直線l:y=kx+m與雙曲線C相交于A,B兩點(A,B均異于左、右頂點),且以線段AB為直徑的圓過雙曲線C的左頂點D,則直線l所過定點為________.
解析:設(shè) 20、A(x1,y1),B(x2,y2),
聯(lián)立
得(1-4k2)x2-8kmx-4(m2+1)=0,
所以Δ=64m2k2+16(1-4k2)(m2+1)>0,x1+x2=>0,x1x2=<0,所以y1y2=(kx1+m)(kx2+m)=k2x1x2+mk(x1+x2)+m2=.
因為以線段AB為直徑的圓過雙曲線C的左頂點D(-2,0),所以kAD·kBD=-1,
即·=-1,
所以y1y2+x1x2+2(x1+x2)+4=0,
即+++4=0,
所以3m2-16mk+20k2=0,解得m=2k或m=.
當(dāng)m=2k時,l的方程為y=k(x+2),直線過定點(-2,0),與已知矛盾 21、;
當(dāng)m=時,l的方程為y=k,直線過定點,經(jīng)檢驗符合已知條件.
故直線l過定點.
答案:
6.已知P為雙曲線C:-=1(a>0,b>0)右支上的任意一點,經(jīng)過點P的直線與雙曲線C的兩條漸近線分別相交于A,B兩點.若點A,B分別位于第一、四象限,O為坐標(biāo)原點,當(dāng)=時,△AOB的面積為2b,則雙曲線C的實軸長為________.
解析:設(shè)A(x1,y1),B(x2,y2),P(x,y),由=,得(x-x1,y-y1)=(x2-x,y2-y),
則x=x1+x2,y=y(tǒng)1+y2,
所以-=1.
由題意知A在直線y=x上,B在y=-x上,則y1=x1,y2=-x2.
所以-=1,即b2(x1+x2)2-a2(x1-x2)2=a2b2,
化簡得:a2=x1x2,
由漸近線的對稱性可得sin∠AOB=sin 2∠AOx
====.
所以△AOB的面積為|OA||OB|sin∠AOB=··sin∠AOB
=··
=x1x2···
=a2··[1+()2]=ab=2b,解得a=.所以雙曲線C的實軸長為.
答案:
13
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案