8、10)=f3(10)=10,
故選A.
10.(2018嘉興一中高三9月基礎(chǔ)知識(shí)測試)已知y=f(x)+x是偶函數(shù),且f(2)=1,則f(-2)=( )
A.2 B.3 C.4 D.5
答案D
解析因?yàn)閥=f(x)+x是偶函數(shù),所以f(x)+x=f(-x)-x,當(dāng)x=2時(shí),f(2)+2=f(-2)-2,又f(2)=1,所以f(-2)=5,故選D.
11.已知函數(shù)f(x)(x∈R,且x≠1)的圖象關(guān)于點(diǎn)(1,0)對稱,當(dāng)x>1時(shí),f(x)=loga(x-1),且f(3)=-1,則不等式f(x)>1的解集是( )
A.-3,32 B.(-∞,-3)∪32,+∞
C.(-∞,-
9、1)∪32,+∞ D.(-∞,-1)∪1,32
答案D
解析由題意,f(x)=-f(2-x),∵當(dāng)x>1時(shí),f(x)=loga(x-1),且f(3)=-1,∴l(xiāng)oga2=-1,∴a=12,∴當(dāng)x>1時(shí),不等式f(x)>1可化為log12(x-1)>1,∴11時(shí),不等式f(x)>1可化為-log12(1-x)>1,∴x<-1.故選D.
12.已知函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R,都有f(x+2)=f(x).當(dāng)0≤x≤1時(shí),f(x)=x2.若直線y=x+a與函數(shù)y=f(x)的圖象在[0,2]內(nèi)恰有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)a的值是( )
A
10、.0 B.0或-12
C.-14或-12 D.0或-14
答案D
解析∵f(x+2)=f(x),∴T=2.
又0≤x≤1時(shí),f(x)=x2,可畫出函數(shù)y=f(x)在一個(gè)周期內(nèi)的圖象如圖.顯然a=0時(shí),y=x與y=x2在[0,2]內(nèi)恰有兩個(gè)不同的公共點(diǎn).
另當(dāng)直線y=x+a與y=x2(0≤x≤1)相切時(shí),也恰有兩個(gè)不同的公共點(diǎn).
由題意知x2=x+a,即x2-x-a=0,Δ=1+4a=0,
則a=-14,此時(shí)x=12.綜上,可知a=0或a=-14.
13.已知f(x)是定義在R上的函數(shù),且對任意x∈R都有f(x+2)=f(2-x)+4f(2),若函數(shù)y=f(x+1)的圖象關(guān)
11、于點(diǎn)(-1,0)對稱,且f(1)=3,則f(2 015)=( )
A.6 B.3 C.0 D.-3
答案D
解析因?yàn)楹瘮?shù)y=f(x+1)的圖象關(guān)于點(diǎn)(-1,0)對稱,所以函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,0)對稱,f(x)是奇函數(shù),對任意x∈R都有f(x+2)=f(2-x)+4f(2),令x=0,得f(0+2)=f(2-0)+4f(2),因此f(2)=0,由f(x+2)=f(2-x)=-f(x-2)知f(x+8)=f(x),所以f(x)是周期為8的周期函數(shù),f(2015)=f(7)=f(-1)=-f(1)=-3.故選D.
14.已知函數(shù)f(x)是R上的奇函數(shù),當(dāng)x>0時(shí)為減函數(shù),且
12、f(2)=0,則{x|f(x-2)>0}= .?
答案{x|00},當(dāng)x-2>0時(shí),f(x-2)>0=f(2),
∵x∈(0,+∞)時(shí),f(x)為減函數(shù),
∴0
13、x)的定義域?yàn)镽.當(dāng)x<0時(shí),f(x)=ln (-x)+x;當(dāng)-e≤x≤e時(shí),f(-x)=-f(x);當(dāng)x>1時(shí),f(x+2)=f(x),則f(8)= .?
答案2-ln 2
解析由題意,f(8)=f(2×3+2)=f(2)=-f(-2)=-(ln2-2)=2-ln2,故填2-ln2.
16.(2018浙江“七彩陽光”聯(lián)盟期中聯(lián)考)已知函數(shù)f(x)是定義在R上的奇函數(shù),對任意的x∈R都有f(1+x)=f(1-x),且當(dāng)x∈[0,1]時(shí),f(x)=2x-1,則當(dāng)x∈[-2,6]時(shí),方程f(x)=-12所有根之和為 .?
答案4
解析由f(1+x)=f(1-x),得f
14、(x+2)=f(-x),又函數(shù)f(x)是奇函數(shù),
則有f(x+2)=f(-x)=-f(x),從而有f(x+4)=f(x),即f(x)是以4為周期的函數(shù).
又函數(shù)f(x)的圖象關(guān)于直線x=1對稱,從而其圖象又關(guān)于直線x=-1對稱,由周期性知函數(shù)圖象關(guān)于直線x=2k+1,k∈Z對稱.由題意知函數(shù)f(x)在區(qū)間[0,1]是增函數(shù),其值域?yàn)閇0,1],此時(shí)方程f(x)=-12無解,由對稱性知函數(shù)f(x)在區(qū)間[1,2]是減函數(shù),其值域?yàn)閇0,1],此時(shí)方程f(x)=-12也無解.由函數(shù)圖象關(guān)于原點(diǎn)對稱知方程f(x)=-12在區(qū)間[-2,-1]和[-1,0]上各有一根,由對稱性知兩根之和為-2.由周
15、期性知方程f(x)=-12在區(qū)間[2,3]和[3,4]上各有一根,由對稱性知兩根之和為6.在區(qū)間[4,6]上方程f(x)=-12無解,故在區(qū)間[-2,6]上共有4個(gè)根,其和為4.故答案為4.
17.(2018浙江諸暨高三5月適應(yīng)性考試)已知f(x)是定義域?yàn)镽的奇函數(shù),且f(x)=f(4-x),當(dāng)-2≤x<0時(shí),f(x)=log3|x|,則f113= .?
答案1
解析由f(x)=f(4-x)知,f113=f4-113=f13,又因?yàn)閒(x)是奇函數(shù),所以f13=-f-13=-log3-13=1.
18.設(shè)f(x)是(-∞,+∞)上的奇函數(shù),f(x+2)=-f(x),當(dāng)0≤x
16、≤1時(shí),f(x)=x.
(1)求f(π)的值;
(2)當(dāng)-4≤x≤4時(shí),求f(x)的圖象與x軸所圍成圖形的面積.
解(1)由f(x+2)=-f(x)得,
f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
所以f(x)是以4為周期的周期函數(shù),
所以f(π)=f(-1×4+π)=f(π-4)=-f(4-π)=-(4-π)=π-4.
(2)由f(x)是奇函數(shù)且f(x+2)=-f(x),
得f[(x-1)+2]=-f(x-1)=f[-(x-1)],
即f(1+x)=f(1-x).
故知函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱.
又當(dāng)0≤x≤1時(shí),f(x)=x,且f(x)的圖象關(guān)于原點(diǎn)成中心對稱,則f(x)的圖象如下圖所示.
當(dāng)-4≤x≤4時(shí),f(x)的圖象與x軸圍成的圖形面積為S,則S=4S△OAB=4×12×2×1=4.
5