《(新課標)2020版高考數(shù)學二輪復習 專題一 三角函數(shù)與解三角形 第2講 三角恒等變換與解三角形練習 理 新人教A版》由會員分享,可在線閱讀,更多相關《(新課標)2020版高考數(shù)學二輪復習 專題一 三角函數(shù)與解三角形 第2講 三角恒等變換與解三角形練習 理 新人教A版(9頁珍藏版)》請在裝配圖網上搜索。
1、第2講 三角恒等變換與解三角形
[A組 夯基保分專練]
一、選擇題
1.(2019·湖南省五市十校聯(lián)考)已知函數(shù)f(x)=2sin xcos x+2cos2x+1,則( )
A.f(x)的最小正周期為π,最大值為3
B.f(x)的最小正周期為π,最大值為4
C.f(x)的最小正周期為2π,最大值為3
D.f(x)的最小正周期為2π,最大值為4
解析:選B.f(x)=2sin xcos x+2cos2x+1=sin 2x+cos 2x+2=2sin(2x+)+2,則f(x)的最小正周期為=π,最大值為2+2=4.故選B.
2.(2019·高考全國卷Ⅰ)△ABC的內角A,B
2、,C的對邊分別為a,b,c.已知asin A-bsin B=4csin C,cos A=-,則=( )
A.6 B.5
C.4 D.3
解析:選A.由題意及正弦定理得,b2-a2=-4c2,所以由余弦定理得,cos A===-,得=6.故選A.
3.在△ABC中,內角A,B,C的對邊分別是a,b,c,若c=2a,bsin B-asin A=asin C,則sin B為( )
A. B.
C. D.
解析:選A.由bsin B-asin A=asin C,
且c=2a,得b=a,
因為cos B===,
所以sin B= =.
3、4.在△ABC中,角A,B,C的對邊分別是a,b,c,若a,b,c成等比數(shù)列,且a2=c2+ac-bc,則=( )
A. B.
C. D.
解析:選B.由a,b,c成等比數(shù)列得b2=ac,則有a2=c2+b2-bc,由余弦定理得cos A===,故A=,對于b2=ac,由正弦定理得,sin2B=sin Asin C=·sin C,由正弦定理得,===.故選B.
5.(一題多解)在△ABC中,已知AB=,AC=,tan∠BAC=-3,則BC邊上的高等于( )
A.1 B.
C. D.2
解析:選A.法一:因為tan∠BAC=-3,所以sin∠BAC=,cos∠BAC=-
4、.由余弦定理,得BC2=AC2+AB2-2AC·AB·cos∠BAC=5+2-2×××=9,所以BC=3,所以S△ABC=AB·ACsin∠BAC=×××=,所以BC邊上的高h===1,故選A.
法二:因為tan∠BAC=-3,所以cos∠BAC=-<0,則∠BAC為鈍角,因此BC邊上的高小于,故選A.
6.如圖,在△ABC中,∠C=,BC=4,點D在邊AC上,AD=DB,DE⊥AB,E為垂足.若DE=2,則cos A等于( )
A. B.
C. D.
解析:選C.依題意得,BD=AD==,∠BDC=∠ABD+∠A=2∠A.在△BCD中,=,=×=,即=,由此解得cos A
5、=.
二、填空題
7.若sin=,則cos=________.
解析:依題意得cos=-cos=-cos
=2sin2-1=2×-1=-.
答案:-
8.已知a,b,c是△ABC中角A,B,C的對邊,a=4,b∈(4,6),sin 2A=sin C,則c的取值范圍為________.
解析:由=,得=,所以c=8cos A,因為16=b2+c2-2bccos A,所以16-b2=64cos2A-16bcos2A,又b≠4,所以cos2A===,所以c2=64cos2A=64×=16+4b.因為b∈(4,6),所以32
6、多解)(2019·合肥市第一次質檢測)設△ABC的內角A,B,C的對邊a,b,c成等比數(shù)列,cos(A-C)-cos B=,延長BC至點D,若BD=2,則△ACD面積的最大值為________.
解析:法一:由題意知b2=ac,由正弦定理得sin2B=sin Asin C?、?,又由已知,得cos(A-C)+cos(A+C)=,可得cos Acos C=?、?,②-①,得-sin2B=-cos B,所以cos2B+cos B-=0,解得cos B=或cos B=-(舍去),所以B=60°,再由題得cos(A-C)=1,則A-C=0,即A=C,則a=c,所以△ABC為正三角形,則∠ACD=120°
7、,AC=b,CD=2-b,故S△ACD=×b×(2-b)×≤=,當且僅當b=2-b,即b=1時取等號.故填.
法二:由題意知b2=ac,且cos(A-C)+cos(A+C)=,即cos Acos C+sin Asin C+cos Acos C-sin Asin C=,即cos Acos C=,由余弦定理得·=,整理得b4-(a2-c2)2=b4,所以a2-c2=0,即a=c,又b2=ac,所以a=b=c,即△ABC為正三角形,所以S△ACD=S△ABD-S△ABC=×2×c×-c2=-(c-1)2+≤,當c=1時取等號,故填.
答案:
三、解答題
10.(2019·廣東六校第一次聯(lián)考)
8、在△ABC中,角A,B,C的對邊分別為a,b,c,且a2+c2-b2=abcos A+a2cos B.
(1)求角B;
(2)若b=2,tan C=,求△ABC的面積.
解:(1)因為a2+c2-b2=abcos A+a2cos B,所以由余弦定理,得2accos B=abcos A+a2cos B,
又a≠0,所以2ccos B=bcos A+acos B,由正弦定理,得
2sin Ccos B=sin Bcos A+sin Acos B=sin(A+B)=sin C,
又C∈(0,π),sin C>0,所以cos B=.
因為B∈(0,π),所以B=.
(2)由tan C=
9、,C∈(0,π),得sin C=,cos C=,
所以sin A=sin(B+C)=sin Bcos C+cos Bsin C=×+×=.
由正弦定理=,得a===6,
所以△ABC的面積為absin C=×6×2×=6.
11.(2019·武漢模擬)在△ABC中,角A,B,C的對邊分別為a,b,c,A=2B,cos B=.
(1)求sin C的值;
(2)若角A的平分線AD的長為,求b的值.
解:(1)由cos B=及0
10、故sin C=sin(A+B)=sin Acos B+cos Asin B=×+×=.
(2)由題意得,∠ADC=B+∠BAC=∠BAC(如圖),所以sin∠ADC=.
在△ADC中,=,
即=,AC=,
故b=.
12.(2019·高考天津卷)在△ABC中,內角A,B,C所對的邊分別為a,b,c.已知b+c=2a,3csin B=4asin C.
(1)求cos B的值;
(2)求sin的值.
解:(1)在△ABC中,由正弦定理=,得bsin C=csin B,又由3csin B=4asin C,得3bsin C=4asin C,即3b=4a.又因為b+c=2a,得到b=
11、a,c=a.由余弦定理可得cos B===-.
(2)由(1)可得sin B==,
從而sin 2B=2sin Bcos B=-,cos 2B=cos2B-sin2B=-,
故sin=sin 2Bcos+cos 2Bsin =-×-×=-.
[B組 大題增分專練]
1.(2019·江西七校第一次聯(lián)考)△ABC的內角A,B,C的對邊分別為a,b,c,已知a(sin A-sin B)=(c-b)(sin C+sin B).
(1)求角C;
(2)若c=,△ABC的面積為,求△ABC的周長.
解:(1)由a(sin A-sin B)=(c-b)(sin C+sin B)及正弦定理,得
12、a(a-b)=(c-b)(c+b),
即a2+b2-c2=ab.
所以cos C==,又C∈(0,π),所以C=.
(2)由(1)知a2+b2-c2=ab,所以(a+b)2-3ab=c2=7,
又S=absin C=ab=,
所以ab=6,
所以(a+b)2=7+3ab=25,a+b=5.
所以△ABC的周長為a+b+c=5+.
2.(一題多解)(2019·福州模擬)如圖,在△ABC中,M是邊BC的中點,cos∠BAM=,cos∠AMC=-.
(1)求∠B的大??;
(2)若AM=,求△AMC的面積.
解:(1)由cos∠BAM=,
得sin∠BAM=,
由cos∠
13、AMC=-,得sin∠AMC=.
又∠AMC=∠BAM+∠B,
所以cos∠B=cos(∠AMC-∠BAM)
=cos∠AMCcos∠BAM+sin∠AMCsin∠BAM
=-×+×=-,
又∠B∈(0,π),所以∠B=.
(2)法一:由(1)知∠B=,
在△ABM中,由正弦定理=,
得BM===.
因為M是邊BC的中點,
所以MC=.
故S△AMC=AM·MC·sin∠AMC=×××=.
法二:由(1)知∠B=,
在△ABM中,由正弦定理=,
得BM===.
因為M是邊BC的中點,所以S△AMC=S△ABM,
所以S△AMC=S△ABM=AM·BM·sin∠B
14、MA=×××=.
3.(2019·昆明市質量檢測)△ABC的內角A,B,C所對的邊分別為a,b,c,已知2(c-acos B)=b.
(1)求角A;
(2)若a=2,求△ABC面積的取值范圍.
解:(1)由2(c-acos B)=b及正弦定理得2(sin C-sin Acos B)=sin B,
所以2sin(A+B)-2sin Acos B=sin B,即2cos Asin B=sin B,
因為sin B≠0,所以cos A=,又0
15、C=4sin Bsin C,因為C=π-(A+B)=-B,所以sin C=sin,
所以S△ABC=4sin Bsin=4sin B,
即S△ABC=2sin Bcos B+2sin2B
=sin 2B-cos 2B+
=2sin+.
因為0