《(安徽專用)2014屆高考數(shù)學(xué)一輪復(fù)習(xí)方案 滾動基礎(chǔ)訓(xùn)練卷(7) 文 (含解析)》由會員分享,可在線閱讀,更多相關(guān)《(安徽專用)2014屆高考數(shù)學(xué)一輪復(fù)習(xí)方案 滾動基礎(chǔ)訓(xùn)練卷(7) 文 (含解析)(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 45分鐘滾動基礎(chǔ)訓(xùn)練卷(七)
(考查范圍:第23講~第25講 分值:100分)
一、選擇題(本大題共8小題,每小題5分,共40分,在每小題給出的四個選項中,只有一項是符合題目要求的)
1.已知向量a=(1,2),b=(0,1),設(shè)u=a+kb,v=2a-b,若u∥v,則實數(shù)k的值是( )
A.- B.-
C.- D.-
2.已知向量a=(n,4),b=(n,-1),則n=2是a⊥b的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分又不必要條件
3.[2012·湛江一中模擬] 在四邊形
2、ABCD中,=,且·=0,則四邊形ABCD是( )
A.矩形 B.菱形
C.直角梯形 D.等腰梯形
4.[2012·皖南八校聯(lián)考] 設(shè)向量a,b滿足:|a|=2,a·b=,|a+b|=2,則|b|等于( )
A. B.1
C. D.2
5.已知向量=(1,-3),=(2,-1),=(k+1,k-2),若A,B,C三點不能構(gòu)成三角形,則實數(shù)k應(yīng)滿足的條件是( )
A.k=-2 B.k=
C.k=1 D.k=-1
6.[2013·江南十校聯(lián)考] 向量a=(2,0),b=(x,y),若b與b-a的夾角等于,則|b|的最大值為( )
A.4 B.2 C.2
3、 D.
7.已知向量a=(1,2),b=(x,4),若|b|=2|a|,則x的值為( )
A.2 B.4
C.±2 D.±4
8.已知菱形ABCD的邊長為2,∠A=60°,M為DC的中點,若N為菱形內(nèi)任意一點(含邊界),則·的最大值為( )
A.3 B.2
C.6 D.9
二、填空題(本大題共3小題,每小題6分,共18分)
9.已知D,E,F(xiàn)分別為△ABC的邊BC,CA,AB上的中點,且=a,=b,下列結(jié)論中正確的是________.
①=a-b;②=a+b;
③=-a+b;④++=0.
10.若|a|=2,|b|=4,且(a+b)⊥a,則a與b的夾角是_
4、_______.
11.[2012·龍亢農(nóng)場中學(xué)月考] 在△ABC中,||=6,||=2,||=4,若O為△ABC的外心,則·=________.
三、解答題(本大題共3小題,每小題14分,共42分,解答應(yīng)寫出文字說明,證明過程或演算步驟)
12.已知向量a=e1-e2,b=4e1+3e2,其中e1=(1,0),e2=(0,1).
(1)試計算a·b及|a+b|的值.
(2)求向量a與b的夾角的正弦值.
13.已知向量a=(1,2),b=(-2,m),x=a+(t2+1)b,y=-ka+b,m∈R,k,t為正實數(shù).
5、
(1)若a∥b,求m的值;
(2)若a⊥b,求m的值;
(3)當m=1時,若x⊥y,求k的最小值.
14.[2012·沈陽二模] 已知向量m=sin2x+,sinx,n=cos2x-sin2x,2sinx,設(shè)函數(shù)f(x)=m·n,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)若x∈0,,求函數(shù)f(x)的值域.
45分鐘滾動基礎(chǔ)訓(xùn)練卷(七)
1.B [解析] v=2(1,2)-(0,1)=(2,3),u=(1,2)+k(0,1)=(1,2+k),因為u∥v,所以2(2+k)-1×3=0,解得k=-,選B.
2.A
6、[解析] 當n=2時,a=(2,4),b=(2,-1),a·b=0,所以a⊥b.而a⊥b時,n2-4=0,n=±2.
3.B [解析] 由=知四邊形ABCD為平行四邊形,又因為·=0,即平行四邊形ABCD的兩條對角線垂直,所以四邊形ABCD為菱形.
4.B [解析] |a+b|2=a2+2a·b+b2=4+3+b2=8,
∴|b|=1.
5.C [解析] 若點A,B,C不能構(gòu)成三角形,則向量,共線.∵=-=(2,-1)-(1,-3)=(1,2),=-=(k+1,k-2)-(1,-3)=(k,k+1),∴1×(k+1)-2k=0,解得k=1.
6.A [解析] 由向量加減法的幾何意義,
7、B始終在以O(shè)A為弦,圓周角∠OBA=的圓弧上,|b|等于弦OB的長,最大為該圓的直徑,由正弦定理,=2R?2R=4,故選A.
7.C [解析] 因為|b|=2|a|,所以=2,解得x=±2.
8.D [解析] 以A點為坐標原點,建立直角坐標系,因為A=60°,菱形的邊長為2,所以D點坐標為(1,),B(2,0),C(3,).因為M是DC中點,所以M(2,).設(shè)N(x,y),則N點的活動區(qū)域為四邊形OBCD內(nèi)(含邊界),則·=(2,)·(x,y)=2x+y,令z=2x+y,得y=-x+,由線性規(guī)劃可知,當直線經(jīng)過點C時,直線y=-x+的截距最大,此時z最大,所以此時最大值為z=2x+y=2×
8、3+×=6+3=9,選D.
9.②③④ [解析] 依據(jù)向量運算的三角形法則,有=--=-b-a,=a+b,
=+=-a+b,由前三個等式知++=0,所以②③④正確.
10. [解析] ∵|a|=2,|b|=4,且(a+b)⊥a,∴(a+b)·a=0,
4+a·b=0,∴a·b=|a|·|b|cosθ=-4,∴cosθ=-,
∴a與b的夾角為.
11.8 [解析] 方法一:連接AO并延長交圓O于一點設(shè)為D,連接CD,則⊥,所以·=0.于是·=·=(+)·=2+·=8.
方法二:過O作AC的垂線交AC于點D,則D為邊AC的中點,向量在上的投影為AD=2.又因向量在上的投影為||·
9、cos〈·〉=,
所以=2,∴·=2||=8.
12.解:(1)由題有a=(1,-1),b=(4,3),
∴a·b=4-3=1;|a+b|=|(5,2)|==.
(2)∵cos〈a,b〉==.
∴sin〈a,b〉==.
13.解:(1)∵a∥b,∴1·m-(-2)×2=0,∴m=-4.
(2)∵a⊥b,∴a·b=0,∴1·(-2)+2m=0,∴m=1.
(3)當m=1時,a·b=0,∵x⊥y,∴x·y=0.
則x·y=-ka2+a·b-k(t2+1)a·b+t+b2=0,
∵t>0,∴k=t+≥2(t=1時取等號).
∴k的最小值為2.
14.解:(1)∵sin2x+=sin2x+cos2x=1,
∴m=(1,sinx),
∴f(x)=m·n=cos2x-sin2x+2sin2x=1-cos2x-sin2x=1-sin2x+,
∴f(x)的最小正周期為T==π.
(2)由(1)知f(x)=1-sin2x+,
∵x∈0,,∴2x+∈,,
∴sin2x+∈-,1,
所以函數(shù)f(x)的值域為0,.