《(全國(guó)通用版)2018-2019高中數(shù)學(xué) 第二章 平面向量 2.4 平面向量的數(shù)量積 2.4.1 平面向量數(shù)量積的物理背景及其含義課件 新人教A版必修4.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《(全國(guó)通用版)2018-2019高中數(shù)學(xué) 第二章 平面向量 2.4 平面向量的數(shù)量積 2.4.1 平面向量數(shù)量積的物理背景及其含義課件 新人教A版必修4.ppt(39頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第二章,平面向量,2.4平面向量的數(shù)量積,2.4.1平面向量數(shù)量積的物理背景及其含義,自主預(yù)習(xí)學(xué)案,,1平面向量的數(shù)量積的定義,|a||b|cos,0,|a|cos,|b|cos,ab0,|a||b|,|a||b|,a2,|a|2,|a||b|,3平面向量數(shù)量積的運(yùn)算律 已知向量a、b、c和實(shí)數(shù) (1)交換律:ab__________ (2)結(jié)合律:(a)b________________________________ (3)分配律:(ab)c__________________,ba,(ab),a(b),acbc,B,A,解析本題考查數(shù)量積的概念及向量運(yùn)算上述7個(gè)命題中只有正確對(duì)于,兩個(gè)向
2、量的數(shù)量積是一個(gè)實(shí)數(shù),應(yīng)有0a0;對(duì)于,應(yīng)為0a0;對(duì)于,由數(shù)量積定義,有|ab||a||b||cos||a||b|,這里是a與b的夾角,只有0或時(shí),才有|ab||a||b|;對(duì)于,若非零向量a、b垂直,有ab0;對(duì)于,由ab0可知ab,即可以都非零,,4(2018全國(guó)卷理,4)已知向量a,b滿足|a|1,ab1,則a(2ab)() A4 B3 C2 D0 解析a(2ab)2a2ab2|a|2ab |a|1,ab1, 原式21213 故選B,B,互動(dòng)探究學(xué)案,已知|a|2,|b|3,a與b的夾角為120,試求: (1)ab; (2)(ab)(ab); (3)(2ab)(a3b) 思路分析根據(jù)數(shù)
3、量積、模、夾角的定義,逐一進(jìn)行計(jì)算即可,命題方向1平面向量的數(shù)量積,典例 1,規(guī)律總結(jié)求向量的數(shù)量積的兩個(gè)關(guān)鍵點(diǎn) 求向量的數(shù)量積時(shí),需明確兩個(gè)關(guān)鍵點(diǎn):相關(guān)向量的模和夾角若相關(guān)向量是兩個(gè)或兩個(gè)以上向量的線性運(yùn)算,則需先利用向量數(shù)量積的運(yùn)算律及多項(xiàng)式乘法的相關(guān)公式進(jìn)行化簡(jiǎn),跟蹤練習(xí)1已知|a|4,|b|5,當(dāng)(1)ab;(2)ab;(3)a與b的夾角為60時(shí),分別求a與b的數(shù)量積,命題方向2向量的投影,(1)若|a|4,ab6,求b在a方向上的投影; (2)已知|a|6,e為單位向量,當(dāng)它們之間的夾角分別等于60,90,120時(shí),求出a在e方向上的投影,典例 2,(2)a在e方向上的投影為|a|c
4、os 當(dāng)60時(shí),a在e方向上的投影為|a|cos603; 當(dāng)90時(shí),a在e方向上的投影為|a|cos900; 當(dāng)120時(shí),a在e方向上的投影為|a|cos1203,規(guī)律總結(jié)求一個(gè)向量在另一個(gè)向量方向上的投影時(shí),首先要根據(jù)題意確定向量的模及兩向量的夾角,然后代入公式計(jì)算即可,,命題方向3利用向量的數(shù)量積解決有關(guān)模、夾角問(wèn)題,思路分析(1)先求ab,再用|ab|與ab的聯(lián)系求解 (2)根據(jù)題中所給等式求出向量a與ab的夾角公式中涉及的所有量,代入公式求解即可,典例 3,,3,利用向量的數(shù)量積判斷幾何圖形的形狀,思路分析易知abc0,分別將a、b、c移至等號(hào)右邊,得到三個(gè)等式,分別平方可得ab、bc
5、、ca,選取兩個(gè)等式相減即可得到a、b、c中兩個(gè)向量的長(zhǎng)度之間的關(guān)系,典例 4,規(guī)律總結(jié)依據(jù)向量數(shù)量積的有關(guān)知識(shí)判斷平面圖形的形狀,關(guān)鍵是由已知條件建立數(shù)量積、向量的長(zhǎng)度、向量的夾角等之間關(guān)系,移項(xiàng)、兩邊平方是常用手段,這樣可以出現(xiàn)數(shù)量積及向量的長(zhǎng)度等信息,為說(shuō)明邊相等、邊垂直指明方向,B,混淆向量的模與實(shí)數(shù)的運(yùn)算,已知|a|2,|b|3,a與b的夾角為120,求|ab|及|ab|的值,典例 5,錯(cuò)因分析該解法錯(cuò)誤地類(lèi)比實(shí)數(shù)運(yùn)算中的法則,實(shí)際上|a2b2||(ab)(ab)||ab||ab| 思路分析直接利用完全平方和(差)公式,規(guī)律總結(jié)利用數(shù)量積求解模的問(wèn)題,是數(shù)量積的重要應(yīng)用,解決此類(lèi)問(wèn)題的方法是對(duì)向量進(jìn)行平方,即利用公式:aa|a|2,從而達(dá)到將向量轉(zhuǎn)化為實(shí)數(shù)的目的,D,1若acbc(c0),則() Aab Bab C|a||b| Da在c方向上的投影與b在c方向上的投影必相等 解析設(shè)a與c的夾角為1,b與c的夾角為2, acbc,|a||c|cos1|b||c|cos2, 即|a|cos1|b|cos2,故選D,D,2下列命題正確的是() A|ab||a||b| Bab0|a||b|0 Cab0|a||b|0 D(ab)cacbc 解析選項(xiàng)D是分配律,正確,A、B、C不正確,D,A,D,5已知|b|5,ab12,則向量a與b方向上投影為_(kāi)_____,