欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

2023屆大一輪復習 第49講 直線與圓的位置關(guān)系(含解析)

上傳人:新** 文檔編號:153985153 上傳時間:2022-09-20 格式:DOCX 頁數(shù):8 大?。?07.46KB
收藏 版權(quán)申訴 舉報 下載
2023屆大一輪復習 第49講 直線與圓的位置關(guān)系(含解析)_第1頁
第1頁 / 共8頁
2023屆大一輪復習 第49講 直線與圓的位置關(guān)系(含解析)_第2頁
第2頁 / 共8頁
2023屆大一輪復習 第49講 直線與圓的位置關(guān)系(含解析)_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

12 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2023屆大一輪復習 第49講 直線與圓的位置關(guān)系(含解析)》由會員分享,可在線閱讀,更多相關(guān)《2023屆大一輪復習 第49講 直線與圓的位置關(guān)系(含解析)(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2023屆大一輪復習 第49講 直線與圓的位置關(guān)系 一、選擇題(共11小題) 1. 直線 3x?y+m=0 與圓 x2+y2?2x?2=0 相切,則實數(shù) m 等于 ?? A. 3 或 ?3 B. ?3 或 33 C. ?33 或 3 D. ?33 或 33 2. 已知圓的方程為 x2+y2?2x+6y+8=0,那么下列直線中經(jīng)過圓心的直線方程為 ?? A. 2x?y+1=0 B. 2x+y+1=0 C. 2x?y?1=0 D. 2x+y?1=0 3. 已知直線 l 過點 ?2,0,當直線 l 與圓 x2+y2=2x 有兩個交點時,其斜率 k 的取值范圍是

2、 ?? A. ?22,22 B. ?2,2 C. ?24,24 D. ?18,18 4. 若直線 1+ax+y+1=0 與圓 x2+y2?2x=0 相切,則 a 的值為 ?? A. 1,?1 B. 2,?2 C. 1 D. ?1 5. 已知圓 C 的半徑為 2,圓心在 x 軸的正半軸上,直線 3x+4y+4=0 與圓 C 相切,則圓 C 的方程為 ?? A. x2+y2?2x?3=0 B. x2+y2+4x=0 C. x2+y2+2x?3=0 D. x2+y2?4x=0 6. 已知圓 x?22+y+12=16 的一條直徑通過直線 x?2y+3=

3、0 被圓所截弦的中點,則該直徑所在的直線方程為 ?? A. 3x+y?5=0 B. x?2y=0 C. x?2y+4=0 D. 2x+y?3=0 7. 設(shè)實數(shù) x,y 滿足 x+22+y2=3,那么 yx 的取值范圍是 ?? A. ?33,33 B. ?∞,?33∪33,+∞ C. ?3,3 D. ?∞,?3∪3,+∞ 8. 過點 P1,1 的直線,將圓形區(qū)域 x,yx2+y2≤4 分為兩部分,使得這兩部分的面積之差最大,則該直線的方程為 ?? A. x+y?2=0 B. y?1=0 C. x?y=0 D. x+3y?4=0 9. 正弦曲線 y=s

4、inx 上切線的斜率等于 12 的點為 ?? A. π3,32 B. ?π3,?32 或 π3,32 C. 2kπ+π3,32k∈Z D. 2kπ+π3,32 或 2kπ?π3,?32k∈Z 10. 圓 x2+y2+2x+4y?3=0 上到直線 x+y+1=0 的距離為 2 的點共有 ?? A. 1 個 B. 2 個 C. 3 個 D. 4 個 11. 直線 x?2y?3=0 與圓 C:x?22+y+32=9 交于 E,F(xiàn) 兩點,則 △ECF 的面積為 ?? A. 32 B. 25 C. 355 D. 34 二、多選題(共2小題) 1

5、2. 已知圓 C:x?32+y?32=72,若直線 x+y?m=0 垂直于圓 C 的一條直徑,且經(jīng)過這條直徑的一個三等分點,則 m= ?? A. 2 B. 4 C. 6 D. 10 13. 已知直線 x?2y+a=0 與圓 O:x2+y2=2 相交于 A,B 兩點(O 為坐標原點),且 △AOB 為等腰直角三角形,則實數(shù) a 的值為 ?? A. 6 B. 5 C. ?6 D. ?5 三、填空題(共11小題) 14. 直線 x+3y+1=0 被圓 C:x2+y2?2x?3=0 截得的弦長為 ?. 15. 若直線 3x+4y

6、=b 與圓 x2+y2?2x?2y+1=0 相切,則實數(shù) b= ?. 16. 直線 l 與圓 x2+y2+2x?4y+1=0 相交于兩點 A,B ,弦 AB 的中點為 (0,1) ,則直線 l 的方程為 ?. 17. 在直角坐標系 xOy 中,以 O 為圓心的圓被直線 x?3y=4 截得的弦長為 43 ,則圓 O 的方程為 ?. 18. 已知圓 C:x?12+y?32=9 的圓心 C 在直線 l 上,且 l 與直線 x+y?2=0 平行,則 l 的方程是

7、 ?. 19. 已知圓 C:x2+y2+2x+ay?3=0 ( a 為實數(shù))上任意一點關(guān)于直線 l:x?y+2=0 的對稱點都在圓 C 上,則 a= ?. 20. 已知圓 C 的圓心在 x 軸的正半軸上,點 M0,5 在圓 C 上,且圓心到直線 2x?y=0 的距離為 455,則圓 C 的方程為 ?. 21. 過點 P?1,4 作圓 x2+y2?4x?6y+12=0 的切線,則切線長為 ? 22. 在平面直角坐標系 xOy 中,圓 C 的方程為 x2+y2?8x+15

8、=0,若直線 y=kx?2 上至少存在一點,使得以該點為圓心,1 為半徑的圓與圓 C 有公共點,則 k 的最大值為 ?. 23. 若圓 O:x2+y2=16,點 P 在直線 x=8 上,過 P 點引圓 O 的兩條切線 PA,PB,切點為 A,B,則 △OAB 面積 S 的取值范圍是 ?. 24. 圓 x2+y2?4x=0 在點 P1,3 處的切線方程為 ?. 四、解答題(共6小題) 25. 求圓心為 C2,?1,且截直線 y=x?1 所得弦的弦長為 22 的圓的方程.

9、 26. 已知圓 O:x2+y2=r2(O 為原點)與 x 軸不重合的動直線 l 過定點 Dm,0m>r>0.且與圓 O 交于 P,Q 兩點(允許 P,Q 重合),點 S 為點 P 關(guān)于 x 軸的對稱點. (1)若 m=2,r=1,P,Q 重合,求直線 SQ 與 x 軸的交點坐標; (2)求 △OSQ 面積的最大值. 27. 回答問題: (1)若圓 C 的方程是 x2+y2=r2,求證:過圓 C 上一點 Mx0,y0 的切線方程為 x0x+y0y=r2. (2)若圓 C 的方程是 x?a2+y?b2=r2,則過圓 C 上一點 Mx0,y0 的切線方程為

10、 ?,并證明你的結(jié)論. 28. (1)點 Pa,b 在圓 C:x2+y2=r2r>0 上,求過點 P 的圓的切線方程; (2)若點 Pa,b 在圓 C:x2+y2=r2r>0 內(nèi),判斷直線 ax+by=r2 與圓 C 的位置關(guān)系. 29. 已知圓 C:x?12+y+22=10,求滿足下列條件的圓的切線方程. (1)與直線 l1:x+y?4=0 平行; (2)與直線 l2:x?2y+4=0 垂直; (3)過切點 A4,?1. 30. 已知圓 C:x2+y2=r2r>0,若直線 l1:x?y+2=0 與圓 C 相交于 A,B 兩點,且 AB=22. (

11、1)求圓 C 的方程. (2)請從條件①、條件②這兩個條件中選擇一個作為點 P 的坐標,求過點 P 與圓 C 相切的直線 l2 的方程. ① 2,?3; ② 1,3. 答案 1. C 【解析】圓的標準方程為 x?12+y2=3,圓心 1,0 到直線的距離 d=3+m3+1=3 時,直線與圓相切,解得 m=3 或 ?33. 2. B 3. C 【解析】設(shè) l 的直線方程為 y=kx+2,將直線方程與圓方程聯(lián)立 y=kx+2,x2+y2=2x. 消 y 得 k2+1x2+4k2?2x+4k2=0,直線與圓有兩個交點,即 Δ>0,所以 k 的取值范圍為 ?24,2

12、4. 4. D 5. D 【解析】設(shè)圓 C 的圓心坐標為 a,0,則 d=∣3a+4×0+4∣32+42=2,a=2 或 a=?143(舍),于是圓心為 2,0,所以圓的方程為 x?22+y2=22. 6. D 【解析】直徑所在直線與 x?2y+3=0 垂直且過圓心,方程為 y??1=?2x?2. 7. C 【解析】如圖所示, 方程 x+22+y2=3 表示: 以 ?2,0 為圓心,3 為半徑的圓, 代數(shù)式 yx=y?0x?0 的幾何意義是: 圓上的點與 0,0 連線的斜率, 由圖象可得,當直線 y=kx 與圓相切時,yx 分別取到最大值和最小值, 由 3

13、=?2kk2+1 得,k=±3, 所以 yx 的取值范圍是 ?3,3. 8. A 【解析】要使直線將圓形區(qū)域分成兩部分的面積之差最大,通過觀察圖形,顯然只需該直線與直線 OP 垂直即可. 9. D 【解析】設(shè)斜率等于 12 的切線與曲線的切點為 Px0,y0. 因為 y?x=x0=cosx0=12, 所以 x0=2kπ+π3 或 x0=2kπ?π3k∈Z, 所以 y0=32 或 y0=?32. 10. C 11. B 12. A, D 【解析】圓 C:x?32+y?32=72 的圓心 C 的坐標為 3,3,半徑 r=62,因為直線 x+y?m=0

14、垂直于圓 C 的一條直徑,且經(jīng)過這條直徑的一個三等分點, 所以圓心到直線的距離為 22, 則有 d=∣6?m∣1+1=22,解得 m=2或10,故選A、D. 13. B, D 【解析】因為直線 x?2y+a=0 與圓 O:x2+y2=2 相交于 A,B 兩點(O 為坐標原點),且 △AOB 為等腰直角三角形,所以 O 到直線 AB 的距離為 1,由點到直線的距離公式可得 ∣a∣12+?22=1,所以 a=±5. 14. 23 【解析】圓 C 的標準方程為 x?12+y2=4,則圓心 1,0 到直線 x+3y+1=0 的距離 d=1,則直線 x+3y+1=0 被圓 C 截

15、得的弦長為 24?1=23. 15. 2 或 12 【解析】因為直線 3x+4y=b 與圓心 1,1,半徑為 1 的圓相切,所以 ∣3+4?b∣32+42=1?b=2或12. 16. x?y+1=0 17. x2+y2=16 18. x+y?4=0 【解析】設(shè)直線為 x+y+m=0,代入點 1,3 得 m=?4. 19. ?2 【解析】由題意知圓心 ?1,?a2 在直線 l 上,即 ?1+a2+2=0 ,解得 a=?2 . 20. x?22+y2=9 【解析】設(shè) Ca,0,a>0,則 ∣2a∣5=455, 解得 a=2, 所以 r=22+5=3, 故圓 C

16、 的方程為 x?22+y2=9. 21. 3 22. 43 【解析】圓 C 的方程可化為 x?42+y2=1, 所以圓心為 4,0,半徑為 1. 由題意知直線 y=kx?2 上至少存在一點 Ax0,kx0?2,使得以該點為圓心,1 為半徑的圓與圓 C 有交點, 所以存在 x0∈R,使得 ACmin≤1+1=2. 又 ACmin 為點 C 到直線 y=kx?2 的距離, 則 ∣4k?2∣1+k2≤2,解得 0≤k≤43, 所以 k 的最大值為 43. 23. S△OAB∈0,43 24. x?3y+2=0 【解析】先由半徑與切線的垂直關(guān)系求得切線斜率為 33,則過

17、 1,3 切線方程為 x?3y+2=0. 25. 設(shè)圓的方程為 x?22+y+12=r2r>0. 由題設(shè)知,圓心到直線 y=x?1 的距離為 d=2??1?112+12=2. 又直線 y=x?1 被圓截得的弦長為 22, 所以 22=2?r2?d2,即 22=2?r2?2.解得 r=2. 所以所求圓的方程為 x?22+y+12=4. 26. (1) 設(shè)直線 l:y=kx?2,則 d=1=∣2k∣1+k2,k=±33,直線 l:y=±33x?2, 聯(lián)立 x2+y2=1,y=±33x?2 解得:x=12, 即直線 SQ 與 x 軸的交點坐標是 12,0. ??????(

18、2) 設(shè)直線 l:x=ty+m, 聯(lián)立 x=ty+m,x2+y2=r2 得 1+t2y2+2tmy+m2?r2=0, 設(shè) Px1,y1,Qx2,y2,Sx1,?y1, 則 y1+y2=?2tm1+t2,y1y2=m2?r21+t2, 直線 lSQ:y+y1=y2+y1x2?x1x?x1, 令 y=0 得 x=y1x2+y2x1y1+y2=2ty1y2+my1+y2y1+y2=r2m, 即直線 SQ 過定點 r2m,0, 所以 S△OSQ=12?r2m?y1+y2=r2∣t∣+1∣t∣, 由 Δ≥0,∣t∣≥m2?r2r. (1)m2?r2r>1,即 m>2r 時,當 ∣t∣=

19、m2?r2r 時,Smax=r3m2?r2m2, (2)0

20、r2,故所求的切線方程為 ax+by=r2. ??????(2) 由已知,得 a2+b2r2r2=r. 所以此直線與圓 C 相離. 29. (1) 設(shè)切線方程為 x+y+b=0,則 1?2+b2=10, 所以 b=1±25, 所以切線方程為 x+y+1±25=0. ??????(2) 設(shè)切線方程為 2x+y+m=0,則 2?2+m5=10, 所以 m=±52, 所以切線方程為 2x+y±52=0. ??????(3) 因為 kAC=?2+11?4=13, 所以過切點 A4,?1 的切線斜

21、率為 ?3, 所以過切點 A4,?1 的切線方程為 y+1=?3x?4,即 3x+y?11=0. 30. (1) 設(shè)圓心 C0,0 到直線 l1 的距離為 d, 則 r2?d2=AB22,即 d2=r2?2, 因為 d=21+1=2,所以 r2=4, 所以圓 C 的方程為 x2+y2=4. ??????(2) ①當直線 l2 斜率不存在時,l2 方程為 x=2,恰好與圓 C 相切, 當直線 l2 斜率存在時, 設(shè) l2 方程為 y+3=kx?2,即 kx?y?2k?3=0, 則圓心 C 到 l2 的距離為 r=?2k?3k2+1=2, 即 2k+32=4k2+4,即 12k+9=4,所以 k=?512, 所以直線 l2 的方程為 512x+y+136=0, 綜上所述,直線 l2 的方程為 5x+12y+26=0 或 x=2. ②因為 1+3=4, 所以點 D1,3 在圓 C 上,即點 D 為切點,則 kCD=31=3, 因為 CD⊥l2,所以 kl2=?33, 所以直線 l2 的方程為 y?3=?33x?1,即 x+3y?4=0. 第8頁(共8 頁)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!