《內(nèi)蒙古鄂爾多斯市東勝區(qū)培正中學(xué)2013屆中考數(shù)學(xué)專題復(fù)習(xí) 專題八 全等三角形(無答案) 新人教版》由會(huì)員分享,可在線閱讀,更多相關(guān)《內(nèi)蒙古鄂爾多斯市東勝區(qū)培正中學(xué)2013屆中考數(shù)學(xué)專題復(fù)習(xí) 專題八 全等三角形(無答案) 新人教版(3頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、
專題八 全等三角形
【基礎(chǔ)知識】
1.全等三角形的性質(zhì):
全等三角形的________相等;________相等.
三角形全部的判定:
(1) 三角形全等的判定定理:
三邊對應(yīng)相等的兩個(gè)三角形全等。(簡記成“邊邊邊”或者“SSS”)
兩角和他們的夾邊對應(yīng)相等的兩個(gè)三角形全等。(簡記為“角邊角”或者“ASA”)
兩邊和他們的夾角對應(yīng)相等的兩個(gè)三角形全等。(簡記為“邊角邊”或者“SAS”)
兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等。(簡記為“”角角邊)或者“AAS”)
(2) 直角三角形全等的判定:
有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等。(簡記為“斜邊直
2、角邊”或者“HL”)
(3) 角平分線的性質(zhì)定理:
性質(zhì):角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.
判定:到一個(gè)角兩邊的距離相等的點(diǎn)在這個(gè)角的平分線上.
【中考鏈接】
例【人教八上P27T9】
如圖8-1,∠ACB=,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,
DE=1.7cm,求BE的長度.
【中考
3、導(dǎo)向】
全等三角形是證明線段、角的數(shù)量關(guān)系或直線位置關(guān)系的有力工具,解決這類問題一般需要先識別出或作出全等三角形,再利用全等三角形的性質(zhì)解題.
變式【2011烏魯木齊】如圖8-2,在△ABC中,∠ACB=,AC=BC,BE⊥CE于點(diǎn)E,
AD⊥CE于點(diǎn)D,求證:△BEC≌△CDA.
【課后自測】
1、 【2012貴陽】如圖8-3,已知點(diǎn).D.C、F在同一條直線上,AB=DE才,BC=EF,
要使△ABC≌△DEF,還需要添加的一個(gè)條件是( )
4、A.∠ACB=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF
圖8-3 圖8-4
2.如圖8-4所示,∠F=∠E=,∠B =∠C,AE=AF,結(jié)論:?EM=FN;②CD=DN;
?∠FAN=∠EAM;④△ACN≌△ABM.其中正確的個(gè)數(shù)有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
3.【2012荊門】如圖8-5在RT△ABC中,∠C=,將△ABC沿AB向下翻
折后,再繞點(diǎn)A,順時(shí)針方向旋轉(zhuǎn)α度(α<∠BAC ),得到RT△ADE
5、,其中斜邊AE交BC于F,直角邊DE分別AB,BC與G.H.
(1) 請根據(jù)題意用實(shí)線補(bǔ)全圖形.
(2) 求證:△ABF≌△AGE
4.如圖8-6,在RT△ABC中,∠BAC=,AC=2AB,點(diǎn)D是AC的中點(diǎn),將一塊銳角為 的直角三角板如圖放置,使三角板斜邊的兩個(gè)端點(diǎn)分別與A、D重合,連接BE、EC.試猜想線段BE和EC的數(shù)量及位置關(guān)系,并證明你的猜想.
3