4四自由度碼垛機器人-物料包裝線模型碼垛推動機構設計【含CAD圖紙和說明書】
4四自由度碼垛機器人-物料包裝線模型碼垛推動機構設計【含CAD圖紙和說明書】,含CAD圖紙和說明書,自由度,碼垛,機器人,物料,包裝,模型,推動,推進,機構,設計,cad,圖紙,以及,說明書,仿單
任務書(理工類)
學生姓名: 專 業(yè): 班 級: 學 號:
指導教師: 職 稱: 完成時間:
畢業(yè)設計(論文)題目:
物料包裝線模型碼垛推動機構的設計
題目來源
教師科研課 題
縱向課題()
題目類型
理論研究(?。?
注:請直接在所屬項目括號內打“√”
橫向課題( )
應用研究(?。?
教師自擬課題(√)
應用設計(√)
學生自擬課題(?。?
其 他(?。?
總體設計要求及技術要點:
根據碼垛機器人的末端執(zhí)行器工作的任務,設計一款碼垛機器人,并且給出該機器人的三維模型,計算出該機器人的自由度,熟悉三維設計軟件能能更好的設計出來機器人。
1、分析國內外現狀,設計一種碼垛機器人;
2、選擇碼垛機器人中的各構件的組成材料,選擇電機以及齒輪等參數;
3、繪制碼垛機器人的裝配圖;
工作環(huán)境及技術條件:
聯網計算機一臺,solidworks 軟件,有關的技術手冊。
工作內容及最終成果:
1、 分析國內外現狀,設計一種碼垛機器人;
2、選擇碼垛機器人中的各構件的組成材料,選擇電機以及齒輪等參數;
3、繪制碼碼垛機器人的裝配圖;
預期成果:
提供一篇設計論文和給出該機器人的三維模型。
時間進度安排:
第1-2周查閱資料和閱讀參考文獻,了解國內外碼垛機器人的發(fā)展狀況,了解碼垛機器人的組成原理。同時完成開題報告。
第3-4周總體方案確定,確定研究碼垛機器人的組成機構,對模型進行總體方案確定。
第5-12周得到碼垛機器人的三維圖。
第13-14撰寫畢業(yè)論文。
第15周準備答辯。
指導教師簽字: 年 月 日
教研室主任意見:
教研室主任簽字: 年 月 日
本科生畢業(yè)設計 (論文)
外 文 翻 譯
原 文 標 題
Influence of construction mass distribution on the walking robot's gait stability
Synthesis
譯 文 標 題
施工質量分布對步行機器人步態(tài)穩(wěn)定性的影響
作者所在系別
機電工程學院
作者所在專業(yè)
機械設計制造及其自動化
作者所在班級
B13113
作 者 姓 名
劉田
作 者 學 號
20134011304
指導教師姓名
韓書葵
指導教師職稱
副教授
完 成 時 間
2017
年
3
月
北華航天工業(yè)學院教務處制
譯文標題
施工質量分布對步行機器人步態(tài)穩(wěn)定性的影響
原文標題
Influence of construction mass distribution on the walking robot's gait stability
作 者
H.W.Muller
譯 名
哈維穆勒
國 籍
美國
原文出處
Journal of Mechanism Design,1981,Vol.103.No.1-4
譯文:
摘要:本研究的目的是找出步行機的施工參數與其穩(wěn)定性之間的聯系。此外,本文展示了重要的質量分布對于正確設計的步態(tài)生成算法。這項研究是基于在Matlab Simulink開發(fā)的六邊形雙壓電機器人的仿真模型。分析了機器人的腿和軀干之間的可變百分比質量分布。
基于結果,我們可以得出結論,行走機器人的腿和軀干的重量之間的比例對大多數步行參數,如步幅長度和速度,穩(wěn)定姿勢的機器,控制方法和移動性有很大影響。 它對質心位置也有巨大的影響,這是行走機器人的靜態(tài)和動態(tài)穩(wěn)定性的關鍵問題。 因此,在整個設計和編程過程中應考慮步行機器人的質量分布。
關鍵詞:六邊形雙壓機器人; 昆蟲; 質量分布; 質心; 步態(tài)穩(wěn)定性
1. 介紹
由身體的重量分布百分比限定的質心位置影響所設計的機器的多個參數。 首先,它負責確保其在工作期間和靜止時的穩(wěn)定性。 它還對運動學參數和動態(tài)參數具有主要影響,尤其包括運動中產生的慣性效應。 這使得重量分布分析成為設計過程的重要部分,特別是在設計機器人,操縱器和處理設備時。
關于機器人的質心位置的研究起源于人和動物的運動的生物力學分析。 這樣的生物模型可以成功地用于機器工程。 當代機器人的主要部分基于上述生物模型。 其中最重要的群體是步行機器人,其移動類似于大多數動物使用步態(tài)循環(huán)組成的步驟[1]。
在當前對質心(c.o.m.)位置的研究中,重點在于確保機器人的靜態(tài)穩(wěn)定性。 當c.o.m.時機器人被認為是靜態(tài)穩(wěn)定的。 投影落在支撐多邊形內。 支撐多邊形由所有接觸點定義,在多支腿機器人的情況下是支撐階段中機器人腿的尖端[1-3]。 在雙腿(雙足)機器人的情況下,動態(tài)穩(wěn)定性是分析的因素,并且當作用在質心上的力矩在運動期間平衡時,機器人被認為是動態(tài)穩(wěn)定的。
在大多數研究中,作者考慮c.o.m. 相對于機器人姿勢的位置[4]。 在大多數情況下忽略由機器人設計限定的結構特性的影響。 它主要被認為是關于雙足機器人的研究,其重量分布是身體平衡的關鍵問題[5]。 本研究的重點是重量分布對步行機的靜態(tài)穩(wěn)定性的影響,基于六邊形雙晶機器人。 第2節(jié)提供了分析設計的簡要描述,包括原型的重量百分比分布。 第3節(jié)描述了本研究中使用的研究方法,第4節(jié)給出了他們獲得的結果
2. 六邊形雙壓機器人
六邊形雙晶機器人可以從六到四腿構型(或相反方向)變換,而不需要改變。 由此,機器人可以在崎嶇的地形中以相對高的速度移動,同時在站立和行走期間保持其操縱功能。 機器人主體(圖1)由三個主干段組成:前段KP,中間段KM和后段KT。 每個段配備有一對三連桿腿,命名為NL2,NP2,NL3,NP3(僅運動)和NP1和NL1(運動和操縱能力)。 作為一個特殊的特點,機器人配備了一個可擴展的重量,可以控制c.o.m. 運動期間的位置[6]。
圖 1.六邊形雙壓機器人示意圖,顯示了原型的重量分布百分比KP-前主干節(jié)段,KM-中間主干節(jié)段,KT-后主干節(jié)段,1P-單軸接頭,2P-雙軸接頭,WM-可擴展配重組件, NP1(NL1) - 右(左)前肢與操縱和運動功能,NP2(NL2) - 右(左)肢具有運動功能,NP3(NL3) - 右(左)后肢具有運動功能。
分析的行走機器人的原型組件的重量在表1中給出??梢栽诖嘶A上計算總體重的百分比。 腿 - 軀干重量比為38.8%至61.2%。 軀干部分以及連接到它們的肢體的重量以總體重的百分比表示為24.4%/ 38.8%/ 36.8%(KP / KM / KT)
表1.六邊形雙壓機器人的段的重量
3. 研究方法
本文報告的研究是使用在軟件程序Matlab Simulink中開發(fā)的仿真模型進行的。 仿真模型是在六元四元雙機器人的數學模型的基礎上開發(fā)的,是先前研究的派生分析。 選擇來量化機器人的靜態(tài)穩(wěn)定性的參數是縱向穩(wěn)定裕度(LSM)。 它被定義為距離c.o.m的最小距離。 投影和支撐多邊形邊緣平行于機器的c.o.m速度矢量測量[7]。
在該研究下進行了兩個分析。 第一個是調查肢體的重量相對于機器人的總重量和機器人的靜態(tài)穩(wěn)定性之間的關系。 針對所分析的六邊形雙壓電機器人的三個選定姿勢檢查五個肢體重量比。 比率從30%到70%相差10%。 為了執(zhí)行分析的目的,必須假定身體段之間具有恒定的比率。 選擇最接近實際結構的比率,前部分占總重量的20%,剩余重量在中間和后部分之間平均分配(每個40%)。 注意,在這些分析中,段的重量不包括附接到它們的肢體的重量。
第二項研究的目的是檢查機器人部分中幾個重量分布對其靜態(tài)穩(wěn)定性的影響。 選擇五個重量分布模式,質心位于軀干前段(40%/ 30%/ 30%),雙軸關節(jié)(40%/ 40%/ 20%),軀干中段 (20%/ 40%/ 40%)和軀干后段(20%/ 30%/ 50%)上的平均值(30%/ 40%/ 30%)。 以與研究No.1相同的方式進行分析,即通過讀取用于相同的三個機器人姿勢和每個預定義的重量分布配置的模擬模型中的質心位置,隨后確定 在站立階段的縱向穩(wěn)定裕度。 在這些分析中,假定所有模擬200克單腿重量包括肢體重量。 假定的體重為3000g。
考慮三種特征姿勢,如圖1所示。 姿勢No.1(圖2a)表示機器人在三腳架步態(tài)中行走,其中三個腿(NL1,NP2,NL3)處于向前擺動(轉移)階段,而其余的腿(NP1,NL2,NP3) 相。 在姿勢No.2(圖2b)中,失去靜態(tài)穩(wěn)定性的最大風險。 在該姿勢中,右腿的后腿和中腿處于站立期,而其他腿處于搖擺階段。 在兩種姿勢中,六邊形雙態(tài)機器人處于六足(即主要)配置。 姿勢No.3表示其中機器人支撐在腿NP2,NP3和NL3上的替代配置(四路)。 在四通道結構中,軀干的前段向上傾斜90度的角度。
圖2.表示六邊形雙壓機器人的分析姿態(tài)的象形圖:a)六足機配置中的三角架步態(tài),b)六足機構配置中的最低穩(wěn)定性情況,c)四足配置。
4. 研究結果
在站立階段期間肢體的重量相對于機器人的總重量和機器人的穩(wěn)定性之間的關系在圖1的圖表中呈現。從曲線可以看出,對于三腳架步態(tài),肢體的重量相對于機器人的總重量的變化對LSM值幾乎沒有影響。軀干和四肢之間的平均重量分布提供了最大的穩(wěn)定性。對于姿勢2和姿勢3,LSM值隨著肢體相對于軀干重量的增加的重量而減小。它是一個或多或少的線性關系。姿勢2中的肢體的低重量將姿勢穩(wěn)定性的損失改變?yōu)闃O限穩(wěn)定性條件。因此,對于小肢體權重,廣義坐標配置對c.o.m的變化幾乎沒有影響。位置。在姿勢編號3中提升軀干產生較高的LSM值。 65%的值被認為是肢體的極限重量,在該極限重量下機器人不能再在替代QUADRUPED配置中操作。
圖3.相對于機器人的總重量的肢體的重量對于三種不同姿勢的LSM值。
圖1中的條形圖。 下面的圖4表示六邊形雙晶機器人的段之間的重量分布對其靜態(tài)穩(wěn)定性的影響。 虛線表示穩(wěn)定性極限。 從圖中可以看出,在這種情況下,三腳架步態(tài)特征總是具有大的穩(wěn)定性余量。 對于剩余的姿勢,只有當c.o.m. 位于單軸接頭或行李箱的后部。
對于完好的功能性,步行機器人應當能夠以四腿構型操作,其要求主干段KP / KM / KT之間的設計比接近20%/ 40%/ 40%或20%/ 30%/ 50 %。
圖4.軀干部分相對于機器人的總重量的重量與三種不同姿勢的LSM值的重量。
所分析的六邊形雙壓電機器人的靜態(tài)穩(wěn)定姿勢在圖6的圖中示出。 圖5和圖6。 點表示與地面接觸的腿的尖端的位置,并且圓圈表示轉移階段中的腿。 點坐標是根據手足動物的正向運動學計算的。 質心位置用十字標記,并且其坐標從仿真模型中計算出來。 這種表示方法使得能夠及時驗證靜態(tài)穩(wěn)定性。
圖5.相對于以六足配置(姿勢No.1)在三腳架步態(tài)中行走的機器人的支撐多邊形示出的質心位置,軀干部分的重量比為20%/ 40%/ 40%。
圖。6.相對于機器人的支撐多邊形顯示的質心位置為四足構型(姿勢3),軀干部分的20%/ 30%/ 50%重量比。
5. 結論
該論文已經證明重量分布配置對靜態(tài)穩(wěn)定性以及因此速度,步幅長度,機器人的控制方法和移動性的顯著影響。可以通過使用模擬模型對已經在工程階段的步行機器人執(zhí)行這樣的分析。注意,盡管在常規(guī)六足機的情況下可以忽略重量的分布,但在六邊形雙壓電機器人的情況下它是最重要的。由于組件的重量設計不正確,機器人可能無法使用替代姿勢。在分析的六邊形雙晶機器人的原型的情況下,表示為相對于機器人的總重量的分量權重的權重分布接近于使用四極配置的關鍵值。通過驗證所選擇的配置,這是本研究的主題,我們只能定義可以找到有效重量分布的范圍。為了找到這個參數,將需要在預定范圍內執(zhí)行更復雜的分析。因此,這種分析可以包括在滿足初步計算的作用的工程過程中,在下一步設計的結構特征被定義之后,需要進行檢查檢查。
原文:
Abstract
The goal of this research is to find connections between construction parameters of walking machine and its stability. Further this paper shows how important mass distribution is for properly designed gait generation algorithms. This research was made based on the simulation model of a hexa-quad bimorphic robot developed in Matlab Simulink. The analyses were made for variable percent mass distribution between the legs and trunk of the robot.
Based on the results we can conclude that the ratio between the weight of legs and trunk of the walking robot has a great influence on most of the walking parameters like stride length and speed, stable postures of machine, method of control and mobility. It has also a huge influence on the centre-of-mass position, which is the key issue of static and dynamic stability of walking robots. Therefore, mass distribution of walking robots should be considered throughout the design and programming process.
Keywords: hexa-quad bimorphic robot; hexapod; mass distribution; centre of mass; gait stability;
1.Introduction
The centre-of-mass position defined by the percentage weight distribution of the body influences a number of parameters of the designed machine. First and foremost it is responsible for ensuring its stability both during work and when at rest. It has also a major effect on the kinematic and dynamic parameters, including, inter alia, inertial effects arising in motion. This makes the weight distribution analysis an important part of the design process,especially when designing robots, manipulators and handling equipment.
The studies on the robots' centre-of-mass position originate from biomechanical analyses of the movement of humans and animals. Such biological models can be successfully used in machine engineering. A major portion of contemporary robots are based on the above-mentioned biological models. The most important group among them are walking robots which move similarly to most animals using gait cycle consisting of steps [1].
In the current studies on the centre-of-mass (c.o.m.) position the focus is on ensuring static stability of the robot. A robot is considered statically stable when the c.o.m. projection falls within the support polygon. The support polygon is defined by all the contact points, which in the case of multi-legged robots are the tips of the robot legs in the support phase [1–3]. In the case of two-legged (biped) robots the dynamic stability is the analysed factor and the robot is considered dynamically stable when the moments acting on the centre of mass are balanced during motion.
In most studies the authors consider the c.o.m. position in relation to the robot's posture [4]. The effect of the structural characteristics defined by the robot design is ignored in most cases. It is considered primarily in the studies concerning biped robots for which the distribution of weight is the key issue for body balance [5]. The focus of this study is the influence of the weight distribution on the static stability of the walking machine on the basis of a hexa-quad bimorphic robot. Section 2 provides a brief description of the analysed design including the percentage weight distribution of the prototype. Section 3 describes the research methods used in this study and Section 4presents the results obtained with them.
2. Hexa-quad bimorphic robot
The hexa-quad bimorphic robot can transform from six- to four-legged configuration (or the other way round) without needing change over. Owing to this, the robot can move with a relatively high speed in rough terrain, while maintaining its manipulation functionality during standing and walking. The robot body (Fig. 1) is composed of three trunk segments: front segment KP, middle segment KM and rear segment KT. Each segment is equipped with a pair of three-link legs designated NL2, NP2, NL3, NP3 (locomotion only) and NP1 and NL1 (locomotion and manipulation capability). As a special feature the robot is equipped with an extendable weight enabling control of the c.o.m. position during locomotion [6].
Fig. 1. Schematic of hexa-quad bimorphic robot showing the prototype's percentage weight distribution KP – front trunk segment, KM – middle trunk segment, KT – rear trunk segment, 1P – single axis joint, 2P – biaxial joint, WM – extendable weight assembly, NP1(NL1) – right (left) front limb with manipulation and locomotion function, NP2(NL2) – right (left) limb with locomotion function,
NP3(NL3) – right (left) rear limb with locomotion function.
The weights of the prototype assemblies of the analysed walking robot are given in Table 1. The percentages of the total body weight can be calculated on this basis. The leg-to-trunk weight ratio ranges from 38.8% to 61.2%. The weights of the trunk segments together with the limbs attached to them expressed as a percentage of the total body weight are 24.4%/38.8%/36.8% (KP/KM/KT).
Table 1. Weights of the segments of hexa-quad bimorphic robot
3. Research methods
The research reported in this article was carried out using simulation model developed in the software program Matlab Simulink. The simulation model was developed on the basis of the mathematical model of hexa-quad bimorphic robot, derived analytically for previous studies. The parameter chosen to quantify the static stability of the robot was the longitudinal stability margin (LSM). It is defined as the smallest distance from the c.o.m. projection and the support polygon edge measured parallel to the c.o.m velocity vector of the machine [7].
Two analyses were carried out under the research. The first of them was to investigate the relationship between the weight of limbs relative to the total weight of the robot and the robot's static stability. Five limb-to-weight ratios were checked for three chosen postures of the analysed hexa-quad bimorphic robot. The ratios differed by 10% from 30% to 70%. For the purpose of carrying out the analyses it is necessary to assume a constant ratio between the body segments. The ratio closest to the actual construction was chosen with the front segment making up 20% of the total weight with the remaining weight split equally between the middle and rear segments (40% each). Note that in theseanalyses the weights of segments do not include the weights of limbs attached to them.
The objective of the second study was to examine the effect of a few weight distributions among the robot segments on its static stability. Five weight distribution patterns were chosen with the centre of mass positioned on the front segment of the trunk (40%/30%/30%), on biaxial joint (40%/40%/20%), on middle segment of the trunk (30%/40%/30%), on the single axis joint (20%/40%/40%) and on the rear segment of the trunk (20%/30%/50%). The analysis was carried out in the same way as in study No. 1, namely by reading the centre-of-mass position in the simulation model for the same three robot postures and each of the pre-defined weight distribution configurations followed by determination of the longitudinal stability margin during stance phase. In these analyses the limb weight was included assuming for all simulations 200 g weight of a single leg. The assumed body weight was 3000 g.
Three characteristic postures were considered, as presented in Fig. 2. Posture No. 1 (Fig. 2a) presents the robot walking in a tripod gait with three legs (NL1, NP2, NL3) in forward swing (transfer) phase and the remaining legs (NP1, NL2, NP3) in the stance phase. In Posture No. 2 (Fig. 2b) there is the greatest risk of losing static stability. In that posture the rear legs and the middle leg on the right-hand side are in the stance phase and the other legs are in the sway phase. In both postures the hexa-quad bimorphic robot is in hexapod (i.e. primary) configuration. Posture No. 3 represents the alternative configuration (quadruped) in which the robot is supported on legs NP2, NP3 and NL3. In the quadruped configuration the front segment of the trunk is tilted up by an angle of 90 degrees.
Fig. 2. Pictograms representing the analysed postures of hexa-quad bimorphic robot: a) tripod gait in hexapod configuration, b) the lowest stability situation in hexapod configuration, c) quadruped configuration.
4. Results of research
The relationship between the weight of limbs relative to the total weight of the robot and the robot's stability during the stance phase is presented in the graphs in Fig. 3. From the curves it can be seen that for the tripod gait a change in the weight of limbs relative to the total weight of the robot has little effect on the LSM value. Equal distribution of weight between the trunk and limbs offered the greatest stability. For Posture No. 2 and Posture No. 3 the LSM value decreases with the increasing weight of limbs in relation to the trunk weight. It is a more or less linear relationship. Low weight of limbs in Posture No. 2 changes the loss of postural stability to the limit stability condition. Hence, for small limb weights the generalized coordinates configuration has little effect on the change of c.o.m. position. Raising the trunk in Posture No. 3 produced higher LSM values. The value of 65% is considered the limit weight of limbs at which the robot can no longer operate in the alternative QUADRUPED configuration.
Fig. 3. Weight of limbs relative to the total weight of the robot vs. LSM value for three different postures.
The bar chart in Fig. 4 below represents the influence of the weight distribution between the segments of hexaquad bimorphic robot on its static stability. The dashed line represents the stability limit. As it can be figured out from the graph, also in this case the tripod gait features always a large stability margin. For the remaining postures stability can be achieved only when the c.o.m. is located on the single-axis joint or on the rear segment of the trunk.
For uncompromised functionality the walking robot should be able to operate in four-legged configuration which requires the design ratio between the trunk segments KP/KM/KT to be close to 20%/40%/40% or 20%/30%/50%.
Fig. 4. Weights of trunk segments relative to the total weight of the robot vs. LSM value for three different postures.
The statically-stable postures of the analysed hexa-quad bimorphic robot are illustrated in the graphs in Fig. 5 and Fig. 6. The dots represent the positions of the tips of legs in contact with the ground and the circles represent the legs in the transfer phase. The point co-ordinates were calculated on the basis of pedipulator forward kinematics. The centre-of-mass position is marked with a cross and its co-ordinates were figured out from the simulation model. This method of representation enables prompt verification of static stability.
Fig. 5. Centre-of-mass position shown against the support polygon of a robot walking in tripod gait in hexapod configuration (Posture No. 1),20%/40%/40% weight ratio of the trunk segments.
Fig. 6. Centre-of-mass position shown against the support polygon of a robot in quadruped configuration (Posture No. 3), 20%/30%/50% weightratio of the trunk segments.
5. Conclusions
The paper has demonstrated a significant influence of the weight distribution configuration on the static stability and, in consequence, also the speed, the stride length, the method of control and mobility of the robot. Such analyses can be carried out for walking robots already at the engineering stage by using simulation models. Note that while the distribution of weight can be ignored in the case of conventional hexapods it is of primary importance in the case of the hexa-quad bimorphic robots. With incorrectly designed weights of components it may be impossible for the robot to use the alternative posture. In the case of the analysed prototype of hexa-quad bimorphic robot the weight distribution expressed as the components weights relative to the total weight of the robot is close to the value critical for using the quadruped configuration. By verification of the chosen configurations, which was the subject of this research, we can only define the range in which effective weight distribution can be found. In order to find this parameter more complex analyses would need to be carried out in the pre-determined range. Therefore, such analyses can be included in process of engineering fulfilling the role of preliminary calculations, which need to be followed by check examinations after structural features have been defined in the next step of design.
指 導 教 師 評 語
外文翻譯成績:
指導教師簽字:
年 月 日
注:1. 指導教師對譯文進行評閱時應注意以下幾個方面:①翻譯的外文文獻與畢業(yè)設計(論文)的主題是否高度相關,并作為外文參考文獻列入畢業(yè)設計(論文)的參考文獻;②翻譯的外文文獻字數是否達到規(guī)定數量(3 000字以上);③譯文語言是否準確、通順、具有參考價值。
2. 外文原文應以附件的方式置于譯文之后。
- 34 -
收藏