《力學答案第十章》由會員分享,可在線閱讀,更多相關《力學答案第十章(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
第十章 波動和聲
10.2.1 頻率在 20 至 20000Hz 的彈性波能使人耳產(chǎn)生聽到聲音的感覺 .0 時,空氣中的聲速為331.5m/s ,求這兩種頻率聲波的波長 .解 :因
所以
10.2.2 一平面簡諧聲波的振幅為 0.001m ,頻率為 1483Hz ,在 20 的水中傳播,寫出其波方程 .解: 已知 波速 1483m/s 。
設 O-x 軸沿波傳播方向, x 表示質元平衡位置坐標, y 表示質心相對平衡位置的位移,選坐標原點處位相為零的時刻為計時起點。即原點處初相為零 。則位于處的體元相位落后 。即:
1
2、0.2.3 已知平面簡諧波的振幅 ,波長 1m ,周期為 ,寫出波方程(最簡形式) . 又距波源 9m 和 10m 兩波面上的相位差是多少?解:
選坐標原點處位相為零刻為計時起點。 O-x 軸沿波傳播方向,得波的最簡形式:
得:
設波源處為 ,則
所以位相差是:
10.2.4 寫出振幅為 A , ,波速為 ,沿 Ox 軸正方向傳播的平面簡諧波方程 . 波源在原點 O ,且當 t=0 時,波源的振動狀態(tài)被稱為零,速度沿 Ox 軸正方向 .
解: 設波源振動方程:
得波源振動方程為:
因為任一 處的位相比波源的相位落后 ,得波方程為
將已知代入得波方
3、程為:
10.2.5 已知波源在原點( )的平面簡諧波方程為
A,b,c 均為常量。試求:( 1 )振幅,頻率,波速和波長;( 2 )寫出在傳播方向上距波源處一點的振動方程式,此質點振動的初位相如何?解:
與平面簡諧波方程的標準形式 比較可得:
? 振幅為 A ,頻率: ;
波速 ,波長
( 2 ) 時,該點的振動方程式為:
此質點振動的初位相為 。
10.2.6 一平面簡諧波逆軸傳播,波方程為,
試利用改變計時起點的方法將波方程化成最簡形式。
解: 對應 的最簡形式應為
如改變計時起點后的新計時系統(tǒng)以 應滿足,因此
即將計時起點提前 3
4、 秒,就可將波方程化成最簡形式
10.2.7 平面簡諧波方程 ,試用兩種方法畫出 時的波形圖。( SI )
解: 的波形圖。
方法一:有方程求得。
找出對應于方程的各( x,y )點 , 例
如:
通過各點描繪出所求波形圖(右圖)。
方法二:由方程求得,
先畫出 的圖形,在將縱坐標軸向右移動 :
即向右移動 ,就可以得到所求的波形圖。
10.2.9 二圖分別表示向右和向左傳的兩列平面簡諧波在某瞬時的波形圖,說明此時 以及 各質元的位移和速度為正還是為負?它們的相位如何?(對于 和 只要求說明其相位在第幾象限)
解: 若波用余弦函數(shù)表示 ,
5、 則所求結果如下表 .
橫坐標
位移
速度
相位
正最大
0
負
負
Ⅱ象限
0
負最大
正最大
0
負
正
Ⅲ象限
0
正最大
10.2.10 圖( a )、( b )分別表示 和 時的某一平面簡諧波的波形圖。試寫出此平面簡諧波波方程。
(a)
(b)
解: 由圖知
由圖 (a) 知,原點處質元初相 .比較 t=0 和 t=2s 的 (a)(b) 圖知 ,
因此 取 ,
將 之值代入波方程的一般表示式就可以得到所求波方程的一個表達式 :
6、10.3.1 有一圓形橫截面的銅絲,手張力 1.0N ,橫截面積為 1.0 . 求其中傳播橫波和縱波時的波速各多少?銅的密度為 ,銅的楊氏模量為 .
解:
可把很細的銅絲看作柔軟的弦線 ( 設弦線的密度為 ), 計算在其中傳播的橫波的波速 .
10.3.2 已知某種溫度下水中聲速為 ,求水的體變模量 .解:
已知
10.4.1 在直徑為 14cm 管中傳播的平面簡諧聲波 . 平均能流密度 , , . ( 1 )求最大能量密度和平均能量密度,( 2 )求相鄰同相位波面間的總能量 .解: (1)
能量密度
最大能量密度
能流密度
已知
平
7、均能流密度
(2)
由于相鄰同位相波面間的距離為 . 一周期內單位體積媒質具有的平均能量為 , 因此相鄰同位相波面間的總能量為
10.4.3 面向街道的窗口面積約 ,街道上的噪聲在窗口的聲強級為 60dB ,問有多少聲功率傳入室內(即單位時間內進入多少聲能)?解:
聲功率
10.4.4 距一點聲源 10m 的地方,聲音的聲強級為 20dB. 求( 1 )距聲源 5m 處的聲強級;( 2 )距聲源多遠,就聽不到 1000Hz 的聲音了?解:
(1)
(2) 設距聲源 時 , 剛好聽不到聲音
10.5.1 聲音干涉儀用于顯示聲波的干涉 , 見圖 .
8、薄膜 S 在電磁鐵的作用下振動 .D 為聲音檢測器 ,SBD 長度可變 ,SAD 長度固定 . 聲音干涉儀內充滿空氣 . 當 B 處于某一位置時 , 在 D 處聽到強度為 100 單位的最小聲音 , 將 B 移動則聲音加大 , 當 B 移動 1.65 時聽到強度為 900 單位的最強音 .
(1) 求聲波的頻率 ,(2) 求到達 D 處二聲波振幅之比 . 已知聲速為 342.4 .
解: (1) 由最小聲音到相鄰的最強音 , 經(jīng) SAD,SBD 管內穿到 D 處的二相干波 , 傳播距離差應改變 , 此改變量是由 B 管的移動引起的 , 因此
(2)
10.5.2 兩個聲源發(fā)
9、出橫波 , 振動方向與紙面垂直 , 二波源具有相同的位相 , 波長 .
(1) 至少求出三個 數(shù)值使得在 P 點合振動最強 ,(2) 求出三個 數(shù)值使得在 P 點合振動最弱 .
解: 由已知此二橫波振動方向相同 , 波長相同 , 在同一種媒質中 , 波速和周期相同 ,P 點的此二橫波的方程可寫成 :
(1) 在 P 點合振動最強時 , 二橫波在該點引起的多振動位相相同 , 即
由此得 , . 已知
取 時得
10.5.3 試證明兩列頻率相同 , 振動方向相同 , 傳播方向相反而振幅大小不同的平面簡諧波相疊加可形成一駐波與一行波的疊加 .解: 設二平面簡諧波為
10、 :
則:
此結果的前一項表示一行波 , 后一項表示一駐波 , 可見滿足題目要求的二平面簡諧波疊加后形成了一駐波與一行波的疊加。
10.5.4 入射波 在固定端反射 , 坐標原點與固定端相距 , 寫出反射波方程 . 無振幅損失 .(SI)
解: 反射波的振幅 , 頻率 , 波速均與入射波相同 , 傳播方向與入射波傳播方向相反 , 初位相也不同 , 因入射波在坐標原點的初位相為零 . 故反射波在原點的初位相為 :
式中 , 為落后位相, 為半波損失。
入射波
可見
由以上各條件可寫出所求反射波在原點的振動方程 :
反射波的振動方程為 :
11、
10.5.5 入射波方程為 , 在 X=0 處的自由端反射 , 求反射波的波方程 . 無振幅損失 .
解: 由入射波方程 知
反射波振幅為 A, 周期為 T, 波長為 , 傳播方向沿坐標軸 O-X 正方向 . 因在 X=0 處自由端反射 , 故反射波與入射波在原點處位相相同 .
因此反射波方程為 :
10.5.6 圖示某一瞬時入射波的波形圖 , 在固定端反射 . 試畫出此瞬時反射波的波形圖 . 無振幅損失 .
解: 因為反射波與入射波傳播方向相反 , 在固定端反射時 , 二者位相差為 , 所以可以按以下方法作出反射波波形圖 :
以界面處質元平衡位置為原點如圖建
12、立坐標系 .
設入射波波方程為
先作出入射波波形圖 , 以 軸為對稱軸的對稱波形圖 , 并畫出該波形圖在固定端左側的部分。
因為固定端反射波在界面處有半波損失 , 所以反射波方程應為 :
其波形可將入射波波形圖向 x 正方向延長,再剪去半個波長后對稱鏡像至 x 軸原點左方而得。
10.5.7 若 10.5.6 題圖中為自由端反射 , 畫出反射波波形圖 .
解: 因為入射波在自由端反射時 , 沒有半波損失 , 即反射波和入射波在界面處位相相同 , 而傳播方向相反 , 所以反射波波形圖是入射波波形圖以界面為對稱的對稱圖形 , 其圖形如圖所示
10.5.8 一平面
13、簡諧波自左向右傳播 , 在波射線上某質元 A 的振動曲線如圖示 . 后來此波在前進方向上遇儀障礙物而反射 , 并與該入射平面簡諧波疊加形成駐波 , 相鄰波節(jié)波腹距離為 , 以質元 A 的平衡位置為 軸原點 , 寫出該入射波波方程 .
解: 振動的一般方程可寫為
由題意知
因此 , 質元 A 的振動方程為 :
這就是所求波方程中原點 處質心的振動方程 .已知相鄰波節(jié) , 波腹間距離為
由以上諸條件可寫出以質元 A 的平衡位置為 OY 軸原點的入射波方程為 :
10.5.9 同一媒質中有兩個平面簡諧波波源作同頻率 , 同方向 , 同振幅的振動 . 二波相對傳播 , 波長
14、 . 波射線上 A,B 兩點相距 . 一波在 A 處為波峰時 , 另一波在 B 處位相為 . 求 AB 連線上因干涉而靜止的各點的位置 .解:
由已知條件可知 , 此二平面簡諧波為相干波 , 在二波源間的連線上形成駐波 .
以 A 為原點建立 OX 坐標軸 , 以甲波在點位相為零時刻為計時起點 . 在 A,B 間 ,
甲波方程為 :
乙波方程為 :
由題知 , 甲波在 A 處質點位移為正最大時 , 在 處的 B 點位相為 , 因此當 時 , 在 處
當 AB 間的點因干涉而靜止時 , 甲乙二波在該點的位相差應滿足 :
當 時 ,
, 這就是 AB
15、 間靜止各點的位置坐標 .
10.5.10 一提琴弦長 50 , 兩端固定 . 不用手指按時 , 發(fā)出的聲音是 A 調 :440 . 若欲發(fā)出 C 調 :528 , 手指應按在何處 ?
解: 音調決定了基頻 , 弦的基頻為
一定 ,
已知
因此
10.5.11 張緊的提琴弦能發(fā)出某一種音調 , 若欲使它發(fā)生的頻率比原來提高一倍 , 問弦內張力應增加多少倍 ?
解:
因此 , 弦內張力應增加 3 倍 .
10.7.1 火車以速率 駛過一個在車站上的觀察者 , 火車發(fā)出的汽笛聲頻率為 . 求觀察者聽到的聲音的變化 . 設聲速是
解: 近似認為靜止的觀察者
16、和火車軌道在同一直線上 , 則當火車駛向觀察者時 , 觀察者聽到的聲音的頻率為
當火車駛離觀察者時 , 觀察者聽到的聲音的頻率為 :
因此 , 火車駛過觀察者時 , 觀察者聽到的聲音頻率的變化為 :
10.7.2 兩個觀察者 A 和 B 攜帶頻率均為 1000 的聲源 . 如果 A 靜止 , 而 B 以 的速度向 A 運動 , 那么 A 和 B 聽到的拍是多少 ? 設聲速是 340 .
解: 對 A 而言,系觀察者靜止 , 聲源運動 , 因此 A 聽到的頻率為:
A 聽到的拍頻為
對 B 來說 , 系觀察者運動 , 聲源靜止 , 因此 B 聽到的頻率為 :
B 聽到的拍頻為
10.7.3 一音叉以 速率接近墻壁 , 觀察者在音叉后面聽到拍音頻率 , 求音叉振動頻率 . 設聲速是 340 .
解: 若音叉后的觀察者直接聽到音叉的頻率為 , 聽到經(jīng)玻璃反射的頻率為 , 因波源 ( 音叉 ) 在運動 , 所以:
拍頻
因此