欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

三角函數(shù)及解三角形知識(shí)點(diǎn)

上傳人:max****ui 文檔編號(hào):17798278 上傳時(shí)間:2020-12-06 格式:DOC 頁(yè)數(shù):7 大?。?83.91KB
收藏 版權(quán)申訴 舉報(bào) 下載
三角函數(shù)及解三角形知識(shí)點(diǎn)_第1頁(yè)
第1頁(yè) / 共7頁(yè)
三角函數(shù)及解三角形知識(shí)點(diǎn)_第2頁(yè)
第2頁(yè) / 共7頁(yè)
三角函數(shù)及解三角形知識(shí)點(diǎn)_第3頁(yè)
第3頁(yè) / 共7頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《三角函數(shù)及解三角形知識(shí)點(diǎn)》由會(huì)員分享,可在線閱讀,更多相關(guān)《三角函數(shù)及解三角形知識(shí)點(diǎn)(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 三角函數(shù)知識(shí)點(diǎn) 2、角的頂點(diǎn)與原點(diǎn)重合,角的始邊與軸的非負(fù)半軸重合,終邊落在第幾象限,則稱(chēng)為第幾象限角. 第一象限角的集合為 第二象限角的集合為 第三象限角的集合為 第四象限角的集合為 終邊在軸上的角的集合為 終邊在軸上的角的集合為 終邊在坐標(biāo)軸上的角的集合為 3、與角終邊相同的角的集合為 4、已知是第幾象限角,確定所在象限的方法:先把各象限均分等份,再?gòu)妮S的正半軸的上方起,依次將各區(qū)域標(biāo)上一、二、三、四,則原來(lái)是第幾象限對(duì)應(yīng)的標(biāo)號(hào)即為終邊所落在的區(qū)域. 5、長(zhǎng)度等于半徑長(zhǎng)的弧所對(duì)的圓心角叫做弧度. 6、半徑為的圓的圓心角所對(duì)弧的長(zhǎng)為,則角的弧度數(shù)的

2、絕對(duì)值是. 7、弧度制與角度制的換算公式:,,. 8、若扇形的圓心角為,半徑為,弧長(zhǎng)為,周長(zhǎng)為,面積為,則,,. 9、設(shè)是一個(gè)任意大小的角,的終邊上任意一點(diǎn)的坐標(biāo)是,它與原點(diǎn)的距離是,則,,. 10、三角函數(shù)在各象限的符號(hào):第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正. Pv x y A O M T 11、三角函數(shù)線:,,. 12、同角三角函數(shù)的基本關(guān)系: ; . 13、三角函數(shù)的誘導(dǎo)公式: ,,. ,,. ,,. ,,. 口訣:函數(shù)名稱(chēng)不變,符號(hào)看象限. ,. ,. 口訣:奇變偶不變,符號(hào)看象限. 14、函

3、數(shù)的圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象. 函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù) 的圖象;再將函數(shù)的圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象. 函數(shù)的性質(zhì): ①振幅:;②周期:;③頻率:;④相位:;⑤初相:. 函數(shù),當(dāng)時(shí),取得最小值為 ;當(dāng)時(shí),取得最大值為,則,,. 15

4、、正弦函數(shù)、余弦函數(shù)和正切函數(shù)的圖象與性質(zhì): 函 數(shù) 性 質(zhì) 圖象 定義域 值域 最值 當(dāng)時(shí),;當(dāng) 時(shí),. 當(dāng)時(shí), ;當(dāng) 時(shí),. 既無(wú)最大值也無(wú)最小值 周期性 奇偶性 奇函數(shù) 偶函數(shù) 奇函數(shù) 單調(diào)性 在 上是增函數(shù);在 上是減函數(shù). 在上是增函數(shù);在 上是減函數(shù). 在 上是增函數(shù). 對(duì)稱(chēng)性 對(duì)稱(chēng)中心 對(duì)稱(chēng)軸 對(duì)稱(chēng)中心 對(duì)稱(chēng)軸 對(duì)稱(chēng)中心 無(wú)對(duì)稱(chēng)軸 半角公式 sin(A/2)=√((1-cosA)/2)

5、 sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化積 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(

6、A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 輔助角公式 ,其中. 降冪公式 (sin^2)x

7、=1-cos2x/2 (cos^2)x=i=cos2x/2 萬(wàn)能公式 令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2) 公式一: 設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

8、 sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α與 -α的三角函數(shù)值之間的關(guān)系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=

9、-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2α及3π/2α與α的三角函數(shù)值之間的關(guān)系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α

10、)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα (以上k∈Z) 注意:在做題時(shí),將a看成銳角來(lái)做會(huì)比較好做。 誘導(dǎo)公式記憶口訣 奇變偶不變,符號(hào)看象限。 同角三角函數(shù)基本關(guān)系 同角三角函數(shù)的基本關(guān)系式 倒數(shù)關(guān)系: tanα cotα=1 sinα cscα=1 cosα secα=1 商的關(guān)系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 兩角和差公

11、式 兩角和與差的三角函數(shù)公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgAct

12、gB+1)/(ctgB-ctgA) 二倍角公式 二倍角的正弦、余弦和正切公式(升冪縮角公式) tan2A=2tanA/(1-tan2A) sin2a=2sinacosa cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 半角的正弦、余弦和正切公式(降冪擴(kuò)角公式) sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) 另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα) 萬(wàn)能

13、公式 sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 萬(wàn)能公式推導(dǎo) 附推導(dǎo): sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*, (因?yàn)閏os^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α)) 然后用α/2代替α即可。 同理可推導(dǎo)余弦的萬(wàn)能公式。正切的萬(wàn)能公式可通過(guò)正

14、弦比余弦得到。 和差化積公式 三角函數(shù)的和差化積公式 sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 積化和差公式 三角函數(shù)的積化和差公式 sinα cosβ=0.5[sin(α+β)+sin(α-β)] cosα sinβ=0.5[sin(α+β)-sin(α-β)] cosα cosβ=0.5

15、[cos(α+β)+cos(α-β)] sinα sinβ=-0.5[cos(α+β)-cos(α-β)] 和差化積公式推導(dǎo) 附推導(dǎo): 首先,我們知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2 同理,若把兩式相減,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2 同樣的,我們還知道cos(a+b)=cosa*cos

16、b-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb 所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2 同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2 這樣,我們就得到了積化和差的四個(gè)公式: sina*cosb=(sin(a+b)+sin(a-b))/2 cosa*sinb=(sin(a+b)-sin(a-b))/2 cosa*cosb=(cos(a+b)+cos(

17、a-b))/2 sina*sinb=-(cos(a+b)-cos(a-b))/2 好,有了積化和差的四個(gè)公式以后,我們只需一個(gè)變形,就可以得到和差化積的四個(gè)公式. 我們把上述四個(gè)公式中的a+b設(shè)為x,a-b設(shè)為y,那么a=(x+y)/2,b=(x-y)/2 把a(bǔ),b分別用x,y表示就可以得到和差化積的四個(gè)公式: sinx+siny=2sin((x+y)/2)*cos((x-y)/2) sinx-siny=2cos((x+y)/2)*sin((x-y)/2) cosx+cosy=2cos((x+y)/2)*cos((x-y)/2) cosx-cos

18、y=-2sin((x+y)/2)*sin((x-y)/2) 0度 sina=0,cosa=1,tana=0 30度 sina=1/2,cosa=√3/2,tana=√3/3 45度 sina=√2/2,cosa=√2/2,tana=1 60度 sina=√3/2,cosa=1/2,tana=√3 90度 sina=1,cosa=0,tana不存在 120度 sina=√3/2,cosa=-1/2,tana=-√3 150度 sina=1/2,cosa=-√3/2,tana=-√3/3 180度 sina=0,cosa=-1,tana=0 270度 sina=-1,cosa=0,tana不存在 360度 sina=0,cosa=1,tana=0 1、正弦定理:在中,、、分別為角、、的對(duì)邊,為的外接圓的半徑,則有. 2、正弦定理的變形公式:①,,; ②,,; ③; ④. 3、三角形面積公式:. 4、余弦定理:在中,有,, . 5、 余弦定理的推論:,,. 6、設(shè)、、是的角、、的對(duì)邊,則:①若,則; ②若,則;③若,則.

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!