欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

三角函數誘導公式及推導

上傳人:max****ui 文檔編號:17798403 上傳時間:2020-12-06 格式:DOC 頁數:4 大?。?2.41KB
收藏 版權申訴 舉報 下載
三角函數誘導公式及推導_第1頁
第1頁 / 共4頁
三角函數誘導公式及推導_第2頁
第2頁 / 共4頁
三角函數誘導公式及推導_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《三角函數誘導公式及推導》由會員分享,可在線閱讀,更多相關《三角函數誘導公式及推導(4頁珍藏版)》請在裝配圖網上搜索。

1、三角函數誘導公式:所謂三角函數誘導公式,就是將角n(π/2)α的三角函數轉化為角α的三角函數。 常用公式:公式一: 設α為任意角,終邊相同的角的同一三角函數的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα(k∈Z) 公式二: 設α為任意角,π+α的三角函數值與α的三角函數值之間的關系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)= tanα cot(π+α)=cotα 公式三: 任意角α與-α的三角函數值之間的關系

2、: sin(-α)=-sinα cos(-α)= cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α與α的三角函數值之間的關系: sin(π-α)= sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系: sin(2π-α)=-sinα cos(2π-α)= cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2α與α的三角函數值之間的關系: sin(π

3、/2+α)=cosα sin(π/2-α)=cosα cos(π/2+α)=-sinα cos(π/2-α)=sinα tan(π/2+α)=-cotα tan(π/2-α)=cotα cot(π/2+α)=-tanα cot(π/2-α)=tanα 推算公式:3π/2 α與α的三角函數值之間的關系: sin(3π/2+α)=-cosα sin(3π/2-α)=-cosα cos(3π/2+α)=sinα cos(3π/2-α)=-sinα tan(3π/2+α)=-cotα tan(3π/2-α)=cotα cot(3π/2+α)=-tanα cot(3π/

4、2-α)=tanα  誘導公式記憶口訣:“奇變偶不變,符號看象限”。 “奇、偶”指的是π/2的倍數的奇偶,“變與不變”指的是三角函數的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n(π/2)α是第幾象限角,從而得到等式右邊是正號還是負號。以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號為負,所以右邊為-sinα。 符號判斷口訣: 全,S,T,C,正。這五個

5、字口訣的意思就是說:第一象限內任何一個角的四種三角函數值都是“+”;第二象限內只有正弦是“+”,其余全部是“-”;第三象限內只有正切和余切是“+”,其余全部是“-”;第四象限內只有余弦是“+”,其余全部是“-”。 也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對應象限三角函數為正值的名稱??谠E中未提及的都是負值。 “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對應的三角函數為正值。 另一種口訣:正弦一二切一三,余弦一四緊相連,言之為正。 推導過程: 萬能公式推導 sin2α=2sinαcosα

6、=2sinαcosα/[cos2(α)+sin2(α)], (因為cos2(α)+sin2(α)=1) 再把分式上下同除cos^2(α),可得sin2α=2tanα/[1+tan2(α)] 然后用α/2代替α即可。 同理可推導余弦的萬能公式。正切的萬能公式可通過正弦比余弦得到。 三倍角公式推導 tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =[2sinαcos2(α)+cos2(α)sinα-sin3(α)]/[cos3(α)-cosαsin2(α)-2sin2(α)cosα] 上下同除以cos3

7、(α),得: tan3α=[3tanα-tan3(α)]/[1-3tan2(α)] sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos2(α)+[1-2sin2(α)]sinα =2sinα-2sin3(α)+sinα-2sin3(α) =3sinα-4sin3(α) cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =[2cos2(α)-1]cosα-2cosαsin2(α) =2cos3(α)-cosα+[2cosα-2cos3(α)] =4cos3(α)-3cosα 即 sin3α=3sinα-4sin3

8、(α) cos3α=4cos3(α)-3cosα 和差化積公式推導 首先,我們知道sin(a+b)=sinacosb+cosasinb,sin(a-b)=sinacosb-cosasinb 我們把兩式相加就得到sin(a+b)+sin(a-b)=2sinacosb 同理,若把兩式相減,就得到cosasinb=[sin(a+b)-sin(a-b)]/2 同樣的,我們還知道cos(a+b)=cosacosb-sinasinb,cos(a-b)=cosacosb+sinasinb 所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosacosb 同理,兩式相減我

9、們就得到sinasinb=-[cos(a+b)-cos(a-b)]/2 這樣,我們就得到了積化和差的公式: cosasinb=[sin(a+b)-sin(a-b)]/2 sinasinb=-[cos(a+b)-cos(a-b)]/2 好,有了積化和差的四個公式以后,我們只需一個變形,就可以得到和差化積的四個公式 我們把上述四個公式中的a+b設為x,a-b設為y,那么a=(x+y)/2,b=(x-y)/2 把a,b分別用x,y表示就可以得到和差化積的四個公式: sinx+siny=2sin[(x+y)/2]cos[(x-y)/2] sinx-siny=2cos[(x+y)/2]s

10、in[(x-y)/2] cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2] cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/2] 三角函數 同角三角函數的基本關系式 倒數關系 tanα cotα=1 sinα cscα=1 cosα secα=1 商的關系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方關系 sin2(α)+cos2(α)=1 1+tan2(α)=sec2(α) 1+cot2(α)=csc2(α) 同角三角函數關系六角形記憶法 構造以“上弦、中切、

11、下割;左正、右余、中間1”的正六邊形為模型。 倒數關系 對角線上兩個函數互為倒數; 商數關系 六邊形任意一頂點上的函數值等于與它相鄰的兩個頂點上函數值的乘積。(主要是兩條虛線兩端的三角函數值的乘積,下面4個也存在這種關系。)由此,可得商數關系式。 平方關系 在帶有陰影線的三角形中,上面兩個頂點上的三角函數值的平方和等于下面頂點上的三角函數值的平方。 兩角和差公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsin

12、β tan(α+β)=(tanα+tanβ )/(1-tanαtanβ) tan(α-β)=(tanα-tanβ)/(1+tanαtanβ) 二倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α) tan2α=2tanα/[1-tan2(α)] tan[(1/2)α]=(sin α)/(1+cos α)=(1-cos α)/sin α 半角的正弦、余弦和正切公式 sin2(α/2)=(1-cosα)/2 cos2(α/2)=(1+cosα)/2 tan2(α/2)=(1-cosα

13、)/(1+cosα) tan(α/2)=(1—cosα)/sinα=sinα/1+cosα 萬能公式 sinα=2tan(α/2)/[1+tan2(α/2)] cosα=[1-tan2(α/2)]/[1+tan2(α/2)] tanα=[2tan(α/2)]/[1-tan2(α/2)] 三倍角的正弦、余弦和正切公式 sin3α=3sinα-4sin3(α) cos3α=4cos3(α)-3cosα tan3α=[3tanα-tan3(α)]/[1-3tan2(α)] 三角函數的和差化積公式 sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 三角函數的積化和差公式 sinαcosβ=0.5[sin(α+β)+sin(α-β)] cosαsinβ=0.5[sin(α+β)-sin(α-β)] cosαcosβ=0.5[cos(α+β)+cos(α-β)] sinαsinβ=- 0.5[cos(α+β)-cos(α-β)]

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!