喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:414951605 或 1304139763】
==========================================喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:414951605 或 1304139763】
==========================================
哈爾濱工業(yè)大學(xué)華德應(yīng)用技術(shù)學(xué)院畢業(yè)設(shè)計(論文)
第1章 緒 論
1.1目的和意義
隨著經(jīng)濟的發(fā)展和技術(shù)的進步,以及對提高作業(yè)效率的要求日益增高,作為汽車大家族中一個分支的自卸汽車,陸續(xù)出現(xiàn)了多種多樣的型式;2008年的北京奧運會和2010上海世博會都拉動對自卸汽車的需求,而且大、重噸位的自卸車所占的比例也將進一步增大。因此對現(xiàn)有的各型自卸汽車進行改裝設(shè)計是非常必要的,尤其在當(dāng)今節(jié)約型社會具有很重要的現(xiàn)實意義。
目前國內(nèi)生產(chǎn)的自卸汽車其卸貨方式為散裝貨物沿汽車大梁卸下,卸貨高度都是固定的。若需要將貨物卸到較高處或使貨物堆積得較高些,目前的自卸汽車就難以滿足要求。為此需設(shè)計一種高位自卸汽車,使它能將車廂舉升到一定高度后再傾斜車廂卸貨。
隨著經(jīng)濟的發(fā)展和技術(shù)的進步,以及對提高作業(yè)效率的要求日益增高,作為汽車大家族中一個分支的自卸汽車,陸續(xù)出現(xiàn)了多種多樣的型式。自卸汽車按其載質(zhì)量的大小可分為超重型、重型、中型以及輕型;按其外形尺寸、總質(zhì)及能否在公路上行駛,又可分為非公路用自卸汽車和公路用自卸汽車;按其車廂卸貨方向的不同,還可以分為后卸式、側(cè)卸式以及三面卸式。目前國內(nèi)外已經(jīng)研制成功并投入使用的自卸汽車有超重型自卸汽車、重型自卸汽車、三面卸自卸汽車、高通過性自卸汽車以及液壓舉升系統(tǒng)自卸汽車等五種類型;其中三面自卸汽車目前應(yīng)用的比較少,而液壓舉升系統(tǒng)自卸汽則應(yīng)用的日益廣泛。
未來是節(jié)約型社會、智能化時代;因此未來的自卸汽車主要是偏重自卸舉升機構(gòu)的創(chuàng)新與智能化,并且具有節(jié)約能耗的特點。
1.2卸汽車定義、組成、功用
自卸汽車是利用本車發(fā)動機驅(qū)動液壓舉升機構(gòu),將其車廂傾斜一定角度卸貨,貨物依靠其自重自行卸下,車廂依靠其自重復(fù)位的專用汽車。
自卸汽車自上世紀初誕生以來,不斷發(fā)展,日趨完善,以成為當(dāng)今貨物運輸?shù)闹饕獙S密囍弧W孕镀嚢从猛究煞譃閮深悾阂活悶榈V用自卸汽車,屬于非公路運輸車;另一類屬于公路運輸?shù)妮p(2~3.5t)、中(4~8t)、重型(8~12t)自卸汽車。
公路運輸用自卸汽車按是否具有特殊功用可分為普通自卸汽車和專用自卸汽車。普通自卸汽車有兩大部分組成,即二類汽車底盤和傾卸裝置。其中傾卸裝置是自卸汽車的主要結(jié)構(gòu)部分。其主要組成如下:
典型的傾卸裝置結(jié)構(gòu)如圖1.1所示。
專用自卸汽車是在普通自卸汽車的基礎(chǔ)上增設(shè)特定的機構(gòu)來實現(xiàn)自己的功能,以達到特定的目的,因此結(jié)構(gòu)上專用自卸汽車比普通自卸汽車復(fù)雜。
圖1.1普通自卸汽車結(jié)構(gòu)組成
1-液壓傾卸操縱裝置;2-傾卸機構(gòu);3-液壓油缸;4-拉桿;5-車廂;
6-后鉸鏈支座;7-安全撐桿;8-油箱;9-油泵; 10-傳動軸;11-取力器
缸;
目前,國內(nèi)生產(chǎn)的載貨自卸汽車多為普通自卸車,其卸貨方式為散裝貨物沿汽車大梁卸下,卸貨高度都是固定的。若需要將貨物卸到較高處或使貨物堆積得較高些,就難以滿足要求。為此需設(shè)計一種專用自卸汽車——高位自卸汽車,它是裝備有車廂高位舉升和傾卸機構(gòu)兩套裝置,能將車廂舉升到一定高度后傾卸物料的自卸汽車,適合于高貨臺卸貨。其外形如圖1.2所示。
圖1.2 高位自卸汽車
高位自卸汽車的高位傾卸動作循環(huán)方式有兩種:其一,首先將處于原始水平位置車廂平移舉升到一定高度,保持位置不變,再將車廂傾卸一定角度卸貨。卸貨完畢,車廂恢復(fù)高位水平位置,最后平移下降到原始位置。其二,按上述程序,車廂高位傾卸后,車廂的兩種復(fù)位動作(即角度復(fù)位和平移下降復(fù)位)同步進行。
1.3國內(nèi)外高位自卸汽車的發(fā)展概況
我國自卸汽車生產(chǎn)始于20世紀60年代初,經(jīng)過40多年的發(fā)展,尤其是在20世紀80年代以后通過技貿(mào)結(jié)合與合作生產(chǎn)方式,從國外引進若干先進的自卸汽車制造技術(shù),并在此基礎(chǔ)上形成以若干大型汽車制造廠為主體的機械傳動式自卸汽車生產(chǎn)企業(yè)集團。公路用自卸汽車的裝載質(zhì)量從2~20t、礦用自卸汽車裝載質(zhì)量從20~154t以下基本形成完整的專用汽車系列,為我國自卸汽車的騰飛打下了堅實的基礎(chǔ)。當(dāng)然,除普通自卸汽車以外,專用自卸汽車的生產(chǎn)也得到了一定的發(fā)展,尤其是新世紀以來,隨著我國社會經(jīng)濟和交通環(huán)境的改善,各行業(yè)對專用汽車尤其是工程系列專用汽車的需求越來越大。專用汽車將跟更加注重行業(yè)化、專用化、系列化。
自卸汽車生產(chǎn)企業(yè)無論是在數(shù)量上還是在質(zhì)量上都得到了空前的發(fā)展,全國生產(chǎn)和改裝汽車的企業(yè)由最初不足11家發(fā)展到1989年的113家,到1998年的721家,占全國汽車生產(chǎn)企業(yè)的86.4%,其中改裝車廠632家,主機(整車制造)廠92家。專用汽車企業(yè)的性質(zhì)和生產(chǎn)模式也都發(fā)生較大改變。由原有分散的中、小型國有企業(yè),通過聯(lián)合、兼并、重組、民營等手段形成了企業(yè)的集團化、大型化。以前“小而全”的生產(chǎn)格局也不復(fù)存在,自卸汽車的生產(chǎn)模式將朝著單一種類、系列化、多品種的專業(yè)化模式發(fā)展。
國外自卸汽車生產(chǎn)始于20世紀30年代,比我國早30多年在其后70多年的發(fā)展過程中,其結(jié)構(gòu)不斷改進,整車性能已有很大提高。為提高自卸汽車的科技含量,追求高附加值,各國更是不斷采用先進技術(shù),其主要表現(xiàn)以下幾個方面:全面提高自卸汽車內(nèi)在質(zhì)量和使用性能;隨著使用范圍的不斷擴大、用戶要求的不斷提高,自卸汽車正朝者多品種、系列化、小批量的方向發(fā)展;在制造加工方面,自卸汽車朝著底盤生產(chǎn)專業(yè)化、零部件生產(chǎn)專業(yè)化、工藝專業(yè)化和輔助生產(chǎn)專業(yè)化方向發(fā)展;廣泛采用計算機輔助設(shè)計,以提高設(shè)計的質(zhì)量和縮短設(shè)計研制的周期;在材料配置上,將更多地采用高強度鋁合金、不銹鋼、工程塑料和聚合材料等。目前,自卸汽車以形成自己獨特的結(jié)構(gòu)與車型系列。
高位自卸車作為自卸車家族的重要組成,多品種、小批量也是其一大特點。高位自卸汽車生產(chǎn)的另一個特點是零部件專業(yè)化生產(chǎn),大部分專用汽車廠實際是一個總裝廠。其產(chǎn)品按結(jié)構(gòu)分工或組織專業(yè)化協(xié)作生產(chǎn)如自卸車油缸,副車架等均有個專業(yè)廠集中生產(chǎn)。
目前,高位自卸汽車的市場占有量還很小,但隨著我國經(jīng)濟的發(fā)展,各種大型項目的實施,高位自卸汽車的市場需求量會逐漸增大,可以預(yù)見,在今后一段時間內(nèi)市場需求將得不到滿足。
1.4高位自卸汽車發(fā)展方向與前景
隨著國民經(jīng)濟的快速增長,加入WTO后市場的開放,西部大開發(fā)戰(zhàn)略的實施,北京申奧的成功,東北三省的振興等,無不在預(yù)示著專用汽車發(fā)展新機遇的來臨。2001年北京申奧成功,北京就決定在5年內(nèi)對城市基礎(chǔ)設(shè)施建設(shè)投入1800億元資金,重點項目達142個,因此,近幾年,北京將是中國最大的專用汽車市場。西部大開發(fā),將促進西部地區(qū)專用汽車市場的有效增長,西部地區(qū)基礎(chǔ)設(shè)施建設(shè)投資達7000億,10年內(nèi)將修建公路35萬公里。專用汽車有著較大的市場發(fā)展空間。諸如“西氣東輸”、“西電東送”、“南水北調(diào)”、青藏鐵路及國內(nèi)幾條高速公路建設(shè)等大型項目的正式啟動,給專用汽車市場特別是重型專用汽車市場注入了巨大活力。任何大工程的啟動都需要工程機械的參與,高位自卸汽車將會在這些大型舞臺里扮演重要的角色。
為使高位自卸汽車能夠在不同工況下圓滿的完成工作的需求,經(jīng)過調(diào)查、研究,我國高位自卸汽車的品種開發(fā)還應(yīng)從以下方面努力:進一步發(fā)展和完善中型高位自卸汽車;進一步開發(fā)自裝卸機構(gòu),以適應(yīng)農(nóng)業(yè)等部門的需求;進一步提高高位自卸汽車的技術(shù)含量以追求其高附加值等。
在以經(jīng)濟建設(shè)為中心的大環(huán)境里,在世界經(jīng)濟復(fù)蘇的浪潮中。高位自卸汽車發(fā)展前景將是一片美好的,但是機遇與挑戰(zhàn)是并成的,只有抓住機遇迎接挑戰(zhàn),才能實現(xiàn)我國專用汽車事業(yè)的真正騰飛。
1.5本次設(shè)計的主要內(nèi)容
本設(shè)計的目標是設(shè)計一種載重5t的高位自卸汽車,其性能參數(shù)與所選底盤車接近。高位自卸汽車是裝備有車廂高位舉升機構(gòu)和傾卸機構(gòu)兩套裝置的載貨自卸汽車。因此本設(shè)計主要研究的內(nèi)容有:車廂高位舉升機構(gòu)的設(shè)計計算、車廂傾卸機構(gòu)的設(shè)計計算、液壓傳動裝置設(shè)計計算選型,并進行二類底盤的選擇、主要參數(shù)數(shù)據(jù)齊備、進行二類底盤選型分析、產(chǎn)生具有實踐意義的選型總結(jié);然后進行車輛的總體布置和性能分析,并用總布置草圖表達主要底盤部件的改動和重要工作裝置的布置;最后通過正確的計算,完成部部件設(shè)計選型,達到工藝合理、小批量加工容易、成本低、可靠性高的設(shè)計要求,并附之以總裝配圖,清楚表達設(shè)計。
第2章 高位自卸汽車設(shè)計計算
2.1高位自卸汽車升高機構(gòu)設(shè)計與分析
在高位自卸車改裝設(shè)計中對升高機構(gòu)設(shè)計要求如下?:
1)能將滿載貨物(4t)的車廂在比較水平的狀態(tài)下平穩(wěn)地舉升到一定高度。
2)在卸貨過程中要保證汽車具有足夠的穩(wěn)定性。
3)在舉升過程中可在任意高度停留卸貨。
2.1.1L型舉升機構(gòu)
圖2.2 車廂舉升裝置原理圖
圖2.1 L型高位自卸汽車
L型高為自卸汽車,是一種常見的高位自卸汽車,如圖2.1所示,圖2.2為其車廂舉升機構(gòu)示意圖,L形桿BIC一端與鉸鏈B相聯(lián)(鉸鏈B通過豎直桿固定在車架上),一端與車廂底部的鉸鏈C相聯(lián),同時其上絞接一液壓油缸2,液壓油缸2另一端與車廂底部的鉸鏈相聯(lián)。舉升時,液壓油缸1伸長,推動L形桿BIC繞鉸鏈B逆時針轉(zhuǎn)過角度,使C端上升;與此同時,同步液壓油缸2也聯(lián)動工作,使車廂也轉(zhuǎn)過角度,從而使車廂在上升過程中保持水平。隨著BIC桿的轉(zhuǎn)動,C點后移,同時帶動車廂后移,當(dāng)點與B點等高時,后移量達到最大。
L型高位自卸汽車的舉升機構(gòu)的優(yōu)點有:
1)該機構(gòu)充分利用了車廂前面的空間,使車廂底部的機構(gòu)變得簡單;
2)該機構(gòu)克服了后移量過大的缺點,機構(gòu)的尺寸也較小。
L型高位自卸汽車的舉升機構(gòu)的缺點有:
1)該機構(gòu)最大的缺點在于車廂全部重量均有L形桿BAI承擔(dān),由于IC很長,所以BAI受到很大的扭矩作用。這就對L形桿的強度提出很高要求,同時也限制了車廂的裝載量。
2)液壓缸1和液壓缸2需要聯(lián)動工作才能保證車廂的水平,使控制機構(gòu)復(fù)雜。
圖2.4平行四邊形舉升裝置
圖2.3 升降式自卸汽車
3)液壓油缸的推程較大。
2.1.2 平行四邊形舉升機構(gòu)
采用平行四邊形的車廂舉升裝置的自卸汽車如圖2.3所示,其工作原理圖如圖2.4所示。它利用油缸OE驅(qū)動平行四邊ABCD組成的連桿機構(gòu),即可實現(xiàn)車廂的平移升降,但在升降過程中,車廂的縱向位移比較明顯。事實上該車就是在普通自卸汽車的基礎(chǔ)上加裝了平行四邊形舉升裝置,適合于高臺卸貨或車輛之間裝卸貨物。
平行四邊形舉升裝置的優(yōu)點有:
1)結(jié)構(gòu)簡單,易于加工、安裝和維修;
2)能夠保證車廂在舉升和下降過程中保持水平,穩(wěn)定性好;
3)液壓油缸較小的推程能夠完成車廂較大的上移量。
平行四邊形舉升裝置的缺點是:車廂上移時,其后移量很大,為了保證車廂舉升到最大高度時,其最大后移量不超過設(shè)計要求,需將桿AD、BC做的很長,甚至大大超過了車廂的長度,在穩(wěn)定性和較小后移量上很難兩全,因此,在工程實際中利用較少
圖2.6 后移量分析原理圖
圖2.5 剪式舉升裝置(1)
2.1.3 剪式舉升機構(gòu)
如圖2.5所示,該舉升機構(gòu)是由長度相等的兩桿AC和BD彼此鉸接于E點;AC桿的A端與水平的液壓油缸拉桿鉸接,并可在滑槽內(nèi)移動;BD桿的B端與車廂底部為滑動鉸接。當(dāng)液壓油缸拉桿右移時,車廂上升,同時向后移動;液壓油缸拉桿左移時,車廂下降,同時向前移動。
下面來具體分析一下車廂的后移原理:
如圖2.6所示,設(shè)AE=BE=a,CE=DE=b,舉升前,舉升后,則有
上移量:
后移量:
化簡后得
可見,后移量與a,b的差值有關(guān),故采用此種布置形式時,鉸接點E不能為兩桿的中點。
圖2.7剪式舉升機構(gòu)裝置(2)
采用此種布置時,會使CD的距離較小,影響了車廂工作時的穩(wěn)定性,特別是在車廂翻轉(zhuǎn)卸貨時,這種影響尤為顯著。為了消除這種影響,將E取為兩桿的中點,同時,為了使車廂在上移時能夠逐漸后移,需要將C點換成滑動鉸接,而D點換成固定鉸接。如圖2.7所示:
此時,由于E取為兩桿的中,所以在車廂上移過程中,A與D,B與C始終在一條直線上;同時由于液壓油缸的作用,拉動A點向后移動,因此,D點也隨之向后移動使整個車廂也向后移動。
設(shè)AC=BD=1,舉升前,舉升后,則有:
上移量:
后移量:
該剪式舉升機構(gòu)的優(yōu)點有:
1)結(jié)構(gòu)簡單,緊湊;
2)能夠很好的協(xié)調(diào)車廂上移量與
后移量之間的關(guān)系,滿足工作要求;
3)機構(gòu)的受力情況較好,汽車工作穩(wěn)定性容易得到保證。
這種剪式機構(gòu)的缺點是液壓缸水平布置時,在舉升初始階段,傳動角較小,不利于工作。
圖2.9 剪式舉升機構(gòu)(4)
圖2.8 剪式舉升機構(gòu)(3)
根據(jù)以上缺點,可以將液壓缸改為豎直布置的形式,同時將A、B兩點互換,使A點固定連接,而B點滑動連接,如圖2.8和圖2.9所示。
圖2.10升降式裝卸汽車
改進后的剪式機構(gòu)優(yōu)點是將液壓缸豎直布置后,可以很好的解決舉升機構(gòu)傳動角過小的問題,而且,它也具有,結(jié)構(gòu)簡單緊湊等優(yōu)點,更改連接方式以后,在整個舉升過程中車廂無后移量。但是它的缺點跟它的優(yōu)點一樣明顯,要實現(xiàn)較大的傳動角,那么液壓缸的推程就需要很大,甚至多級舉升都不易實現(xiàn),而且車廂不舉升時,能供液壓油缸布置的地方較小。實際應(yīng)用如圖2.10所示。
為此,可以將液壓缸改為斜向向布置,即液壓缸布置在剪叉機構(gòu)的右側(cè),如圖2.9所示。將液壓缸布置在右側(cè),不但可以很好的就解決機構(gòu)傳動角小的問題,而且結(jié)構(gòu)緊湊,所用液壓缸的活塞推力也較小,因此可以選用直徑較小的液壓油缸但具有與上面同樣缺點,油缸推程較大,但它可供布置的地方較大,布置更靈活。
2.2 傾卸機構(gòu)的設(shè)計與分析
現(xiàn)代自卸汽車傾卸機構(gòu)主要分為兩大類:直推式和桿系傾卸式,它們均采用液壓作為舉升動力。傾卸機構(gòu)主要由傾卸桿系機構(gòu)、車廂和副車架組成。其功能是承載物料,并在液壓系統(tǒng)的驅(qū)動下完成傾卸動作。
高位自卸汽車改裝對傾卸機構(gòu)的設(shè)計要求如下:
1)利用連桿機構(gòu)實現(xiàn)車廂的翻轉(zhuǎn),其安裝空間不能超過車廂底部與托架大梁間的空間。
2)結(jié)構(gòu)要緊湊,可靠,具有很好的動力傳遞性能。
3)完成傾卸后,要能夠復(fù)位。
2.2.1油缸直推式
圖2.12單缸直推式傾卸機構(gòu)
油缸直推式傾卸機構(gòu)的示意圖如圖2.12所示,這種機構(gòu)結(jié)構(gòu)簡單緊湊、舉升效率高、工藝簡單、成本較低。采用單缸時,容易實現(xiàn)三面傾斜。另外,若油缸垂直下置時,油缸的推力可以作為,車廂的舉升力,因而所需的油缸功率較小。但是采用單缸時機構(gòu)橫向強度差,而且油缸的推程較大;采用多節(jié)伸縮時密封性也稍差。
典型車型有 1)單缸:前置--斯太爾1291.280/K38、瑪斯-5511;
后置--斯太爾991.200/K38、CA340。
2)雙缸:QD351、EQ340。
2.2.2 杠桿平衡式(油缸后推杠桿組合式)
圖2.13桿系傾卸機構(gòu)(1)
油缸后推杠桿組合式傾卸機構(gòu)的示意圖如圖2.13,這種機構(gòu)具有結(jié)構(gòu)緊湊,橫向剛度比較好,舉升時轉(zhuǎn)動圓滑平順,桿系受力比較小,舉升過程中油缸的擺動角度很小,油缸的行程也比較短等優(yōu)點。但因為機構(gòu)集中在車后部,車廂底板受力大,給車身的整體布局帶來一定的困難,而且,在推桿推動車廂翻轉(zhuǎn)時,車廂傾翻軸支架的水平間內(nèi)力非常大,因此,對材料的要求比較高。
典型車型舉例:日產(chǎn)PTL81SD。
2.2.3 油缸前推連桿組合式(馬勒里舉升臂式)
圖2.14桿系傾卸機構(gòu)(2)
油缸前推連桿組合式傾卸機構(gòu)的示意圖如圖2.14所示,這種機構(gòu)橫向剛度較好,舉升時轉(zhuǎn)動圓滑平順,三腳架推動車廂舉升時,車廂傾翻軸支架的水平反力比較小,車架底部的受力也比較均勻。但是油缸在車廂翻轉(zhuǎn)過程中擺動角度較大,且活塞行程稍大。
典型車型舉例:五十鈴TD50ALCQD、QD362。
2.2.4 油缸后推連桿組合式(加伍德舉升臂式)
圖2.15桿系傾卸機構(gòu)(3)
油缸后推連桿組合式傾卸機構(gòu)的示意圖如圖2.15所示,該機構(gòu)結(jié)構(gòu)比較緊湊,橫向剛度較好,油缸的推程小,舉升時轉(zhuǎn)動圓滑平順。但舉升力系數(shù)大,舉升臂(三角架)較大。
典型車型舉例:五十鈴TD50A-D、QD352、HF352。
2.2.5 油缸浮動連桿式(強力型)
圖2.16桿系傾卸機構(gòu)(4)
油缸浮動連桿傾卸機構(gòu)示意圖如圖2.16所式,該機構(gòu)結(jié)構(gòu)緊湊,橫向剛度較好,舉升時轉(zhuǎn)動圓滑平順。油缸進出油管活動范圍大,油管長,副車駕受力改善,舉升力系數(shù)較小。但該機構(gòu)結(jié)構(gòu)比較大,油缸固定在節(jié)點上,從而使桿件剛度要求較高。而且油缸轉(zhuǎn)動角度過大。
典型車型舉例:YZ-300。
2.2.6 前推杠桿組合式
圖2.17 桿系傾卸機構(gòu)(5)(五)
前推杠桿組合式傾卸機構(gòu)示意圖如圖2.17所示,該機構(gòu)橫向剛度好,舉升時轉(zhuǎn)動平順圓滑,在舉升過程中,舉升力小,構(gòu)件受力改善。但油缸的行程過大,偏擺角大。
典型車型舉例:SX360。
2.2.7 俯沖式
圖2.18 桿系傾卸機構(gòu)(6)
俯沖式桿系傾卸結(jié)構(gòu)簡單,造價低,橫向剛度好,舉升轉(zhuǎn)動圓滑平順。但油缸必須增大容量。
典型車型舉例:73型。
直推式與桿系組合式兩大類傾卸機構(gòu)各項性能比較祥見表2-1從以上幾種方案分析中可以看到直推式和桿系傾卸式具有的共同特點,它們均采用液壓作為舉升動力。 不同的是直推式是利用油缸直接舉升車廂實現(xiàn)起傾卸,油缸推動力直接作用在車廂上,不需要桿系作用;而桿系傾卸式的傾卸機構(gòu)由連桿、三角架或推桿等組成。不同的傾卸機構(gòu)的布置和組成也不相同,但他們都具有舉升平順,舉升剛度好,使油缸行程成倍增大,可采用結(jié)構(gòu)簡單、密封性好、易于加工的單缸,布置靈活多樣等優(yōu)點。
定鎖壓板2,迫使壓板2連同聯(lián)接在它上面的帶四角形凸輪的轉(zhuǎn)軸一起圍繞銷3沿順時針方向旋轉(zhuǎn),利用凸輪壓迫橡膠塊所產(chǎn)生的反力將滾子夾緊,使車廂與托架保持可靠。
第3章 高位自卸汽車設(shè)計計算
3.1 高位自卸汽車底盤的選擇
根據(jù)我國目前生產(chǎn)的各類型專用車輛的基本模式,大多是為了滿足國民經(jīng)濟某一服務(wù)領(lǐng)域的特定使用要求,主要是在已定型的基本車型底盤的基礎(chǔ)上,進行車身及工作裝置的設(shè)計,與此同時對底盤各總成的結(jié)構(gòu)與性能進行局部的更改設(shè)計與合理匹配,以達到滿足使用需求的較為理想的整車性能。
因此,專用汽車性能的好壞直接取決于專用汽車底盤的好壞,通常專用車輛所采用的基本底盤按結(jié)構(gòu)分可分為二、三、四類底盤。二類底盤是在整車基礎(chǔ)上去掉貨廂,三類底盤是從整車上去掉駕駛室與貨廂,四類底盤是在三類底盤的上去掉車架總成剩下的散件。
汽車底盤的選擇主要是根據(jù)專用汽車的類型、用途、裝載質(zhì)量、使用條件、專用汽車的性能指標、專用設(shè)備或裝置的外形、尺寸、動力匹配等決定,目前,幾乎80%以上的專用車輛采用二類底盤進行改裝設(shè)計。采用二類汽車底盤進行改裝設(shè)計工作重點是整車總體布置和工作裝置設(shè)計,對底盤僅作性能適應(yīng)性分析和必要的強度校核,以確保改裝后的整車性能基本與原車接近。
在汽車底盤選型方面,一般應(yīng)滿足下述要求;
1)適用性
對于專用改裝車底盤應(yīng)適用于專用汽車特殊功能的要求,并以此為主要目標進行改裝造型設(shè)計。
2)可靠性
所選用汽車底盤要求工作可靠,出現(xiàn)故障的幾率少,零部件要有足夠的強度和壽命。且同一車型各總成零部件的壽命應(yīng)趨于平衡。
3)先進性
應(yīng)使用整車在動力性、經(jīng)濟性、操縱穩(wěn)定性、行駛平順性及通過性等基本性能指標和功能方面達到同類車型的先進水平的汽車底盤。而且在專用性能上要滿足國家或行業(yè)標準的要求。
4)方便性
所選用的底盤要便用于安裝、檢查保養(yǎng)和維修,處理好結(jié)構(gòu)緊湊與裝配調(diào)試空間合理的矛盾。
在選用底盤時,除了上述因素外,還有以下兩個和重要的方面,一是汽車底盤價格,它是專用汽車購置成本中很大的部分,一定要考慮到用戶可以接受。這也涉及到專用汽車產(chǎn)品能否很快的占有市場,企業(yè)能否增加效益問題。二是汽車底盤供貨要有來源,所選用的底盤在市場上必須具有一定的保有量。
表3-1 EQ1090和CA1091底盤參數(shù)
主要參數(shù)
車型
大裝牌DLZ3091JDH
美發(fā)MG3090D
裝載質(zhì)量(kg)
4500
4500
整車整備質(zhì)量(kg)
4800
4590
總質(zhì)量(kg)
9300
9275
底盤型號
CA1091
EQ1090
車廂尺寸(長*寬*高)mm
4200*2300*550
3300*2170*530
軸距(mm)
4050
3950
最小離地間隙(mm)
265
265
發(fā)動機型號
CA6102
EQ6100-1
最高車速(km/h)
90
90
最小轉(zhuǎn)彎半徑(m)
8
8
最大爬坡度
28%
28%
百公里油耗
26.5
26.5
制動距離(m/30km/h)
8
8
車胎類型與規(guī)格
9.00-20
9.00-20
從上表中,可以發(fā)現(xiàn)CA1091與 EQ1090在整體性能上差不多,且市場價格和在市場上的占有率都差不多,因此,這兩種底盤無論那一個都是上佳選擇,因為是CA1091底盤更適合于高位自卸汽車改裝設(shè)計,所以選擇CA1091底盤作為本次設(shè)計汽車所用底盤。
1)尺寸參數(shù)的確定
高位自卸汽車與普通自卸汽車一樣,都是在二類底盤的基礎(chǔ)上進行改裝而成,主要尺寸參數(shù)原則上應(yīng)于原車底盤尺寸相同,保證性能參數(shù)與原車基本保持不變。
2)質(zhì)量參數(shù)的確定:
① 額定裝載質(zhì)量
因為高位自卸汽車比普通自卸汽車多加了一套升高裝置,所以裝載質(zhì)量應(yīng)比
普通自卸汽車小,根據(jù)大裝牌DLZ3091JDH車裝載質(zhì)量為4500kg,所以初定額定裝載質(zhì)量為4000kg。
② 整車整備質(zhì)量
整車整備質(zhì)量是指專用汽車帶有全部工作裝備及底盤所有附屬設(shè)備。加滿油和水,
但未載人和載貨時整車質(zhì)量。參考同類普通自卸汽車的整車整備質(zhì)量在此基礎(chǔ)上在增加車廂升高裝置的質(zhì)量,便可估算高位自卸汽車的整車整備質(zhì)量。
大裝牌DLZ3091JDH車整車整備質(zhì)量4800kg,因為在本次設(shè)計選用的車廂尺寸有較
大的變化,選用的是35002400530,因此整車整備質(zhì)量比大裝牌DLZ3091JDH車相對較小,取為4700kg。即高位自卸汽車整車整備質(zhì)量為:
kg
(3)總質(zhì)量 總質(zhì)量計算公式為:
kg
式中——乘員質(zhì)量(kg),按每人65kg計。
高位自卸汽車軸載質(zhì)量分配應(yīng)基本接近原車底盤要求。為補償車廂升高時,其質(zhì)心略向后移,整車質(zhì)心位置可比同類普通自卸汽車的質(zhì)略向后移。當(dāng)高位自卸汽高位自卸時,應(yīng)對高位工況的軸載質(zhì)量分配工作專門分析計算。
3.2高位升高機構(gòu)的設(shè)計計算
剪式舉升機構(gòu)是常見的高位舉升機構(gòu),該機構(gòu)采用長度相等的支撐桿CE、FD彼此鉸接于中心B點,且DF桿的D點與車廂底架為滑動鉸接,并可在滑槽內(nèi)移動;CE桿的C端與車架上的滑槽滑動鉸接。當(dāng)液壓油缸在舉升工況時,推動車廂上升;液壓油缸在下降工況時,車廂下降。如圖3.1所示。
3.2.1 高位升高機構(gòu)的運動學(xué)分析
在舉升過程中機構(gòu)采用兩個相同的液壓油缸進行支承,其運動力學(xué)分析見圖3.1,由于此機構(gòu)為平面運動,可用瞬時速度中心法求解活塞運動速度。
圖3.1 運動分析機構(gòu)簡圖
杠FD上D點、A點的瞬時轉(zhuǎn)動中心都為F點,這樣D點的運動速度:
(3-1)
A點的運動速度:
臺面升降速度:
A點的運動速度:
(3-2)
活塞運動速度:
(3-3)
式中
3.2.2高位舉升機構(gòu)動力學(xué)分析
圖3.2動力分析機構(gòu)簡圖
考慮整個剪叉機構(gòu)為平衡對象,鉸鏈的約束為理想約束,臺面荷重W及液壓缸活塞推力P為主動力,依虛位移原理可知,所有作用在該質(zhì)點系的主動力在任何虛位移中所做的虛功之和等于零。即
取圖3-2所示的坐標軸,可得:
(3-4)
由圖3.2分析可知:
,
,,
經(jīng)變分運算后得:
代入式3-4,整理后得活塞推力
(3-5)
這就是活塞推力與臺面荷重的關(guān)系式。由此式可見,在給定臺面荷重W的情況下,活塞推力P隨a,B角變化而變化,而a,B角與結(jié)構(gòu)尺寸a,b,l及升程h有關(guān)。所以,根據(jù)設(shè)計要求的荷重和剪叉機構(gòu)的結(jié)構(gòu)尺寸,即可求出在整個升程范圍內(nèi)液壓缸活塞的推力,以確定出液壓系統(tǒng)的工作壓力。
驗證(3-3)式和(3-5)式的正確性,可從機械能守恒原理來證明,即
當(dāng)起始角為最小值時,活塞推力P為最大值,這便是確定液壓系統(tǒng)最高工作壓力的依據(jù)。而臺面升降速度V的變化范圍較小,可以滿足工程設(shè)計的要求,如要進一步減小升降速度的變化范圍,可通過適當(dāng)調(diào)整結(jié)構(gòu)尺寸a,b,l來實現(xiàn)。
因此,校核計算時只需要校核在最低位置時參數(shù)就行了。
3.2.3舉升機構(gòu)參數(shù)的確定與校核
剪叉機構(gòu)的結(jié)構(gòu)尺寸:a=500mm,b=100mm,l=1460mm,,
考慮到超載的因素,因此計算臺面荷重應(yīng)有一定的安全系數(shù),即臺面荷重:
N
1) 油缸與活塞初始長度:
mm
mm
mm
2) 油缸推力:
N
由于剪叉機構(gòu)由兩個相同的液壓油缸同時提供的,因此單個液壓油缸的推力為:
N
3) 銷軸的校核:(圖3.3為剪叉臂受力簡圖)
N
圖3.3剪叉臂受力簡圖
整體考慮對O點取矩:
N
中心銷B所受力:
N
N
底座銷O所受力:
N
N
N
銷軸均用45鋼制造,作調(diào)質(zhì)處理,其屈服強度為[]=335MPa,選擇安全系數(shù)為2,其許用剪切應(yīng)力[]=0.5[]=167.5Mpa。
與油缸聯(lián)結(jié)的銷軸的直徑為30mm,其最大剪切應(yīng)力為:
MPa
底座銷軸的直徑為40mm,其最大剪切應(yīng)力為:
MPa
中心銷軸的直徑為40mm,其最大剪切應(yīng)力為:
MPa
銷軸都有足夠的抗剪切能力。
4)剪叉臂的校核
由圖3.3可知對剪叉臂上段受力最大,剪叉臂初選碳素合金鋼Q345(16MnL)的方型鋼管,其截面尺寸為100508,經(jīng)有限元分析發(fā)現(xiàn)其在D點(圖3.2)時變形最大,為1.7mm(參考黃考考《高位自卸改裝汽車靜力學(xué)分析與有限元優(yōu)化設(shè)計》),在從平臺安全性、穩(wěn)定性和節(jié)約材料等多方面考慮,將剪叉臂的最大變形量設(shè)置為10mm,這樣高位升高機構(gòu)該剪叉臂就符合要求了。
5)托架的校核
在舉升過程中托架基本上被內(nèi)外剪叉臂分為三段,托架采用兩側(cè)立的16槽鋼,寬為900mm承受均布載荷,材料為Q345(16MnL)如圖3.4所示,此托架最大變形量為0.019m,為了增加上平臺的穩(wěn)定性只要將其最大變形量控制在30mm以內(nèi)就可以。因此此托架完全可以滿足要求。
圖3.4 托架
3.3 高位傾卸機構(gòu)的設(shè)計計算
3.3.1 舉升工作原理
D式舉升機構(gòu)又稱后推式連桿放大舉升機構(gòu)。具有工作原理見圖3.5。該舉升機構(gòu)由舉升油缸OB、三角臂ABC、拉桿OA構(gòu)成。工作狀態(tài)下油缸充油使活塞桿OA一邊旋轉(zhuǎn)一邊升高。三角臂通過鉸接點C使貨廂繞后鉸接點K翻轉(zhuǎn),實現(xiàn)貨廂舉升卸貨。當(dāng)卸貨完成后,液壓操縱手柄扳到“下降”位置,車廂在自重作用下使油缸回油并復(fù)位。
3.3.2 受力分析
圖3.5 D式舉升機構(gòu)示意圖
D式舉升機構(gòu)的油缸P通過三角臂DBK間接作用到貨廂上。油缸兩端通過鉸鏈A、B分別與車架、三
角臂相連。拉桿兩端通過鉸鏈A、K分別與車架、三角臂相連。三角臂通過鉸鏈D與貨廂相連。圖3.6中受力與結(jié)構(gòu)參數(shù)示意為:
——三角臂對貨廂舉升力;
——貨廂對三角臂的舉升阻力;
——貨廂及貨物總重,假設(shè)貨物在貨廂中均勻分布,且在舉升中重心恒定;
——油缸對三角臂推力;
——拉桿對三角臂拉力;
——推力與夾角,即;
——推力與拉桿夾角,即;
——推力與夾角,即;
——三角臂結(jié)構(gòu)參數(shù),即;
——油缸推力與拉桿夾角,即;
——鉸點、間距離;
——鉸點、間距離;
——鉸點、間距離;
——拉桿的長度;
圖3.6 D式舉升機構(gòu)受力簡圖
——三角臂邊長;
——三角臂邊長;
——車廂舉升角;
——油缸與垂線夾角;
——與車廂底面夾角;
——與大梁平面夾角;
1)三角臂對車廂翻傾力F的計算
以三角臂為分離體,作用于其上的三個力、與構(gòu)成平面匯交力系,
三力作用線必通過A點,且=。
在以車廂為分離體,不計各鉸鏈處摩擦阻力矩,對鉸點取矩,即
則:
(3-6)
在中:
(3-7)
又有:
得: (3-8)
由式(3-7)和式(3-8)可得:
(3-9)
由式(3-6)及(3-9),對于任一個給定的車廂舉升角,都可求出三角臂所能產(chǎn)生的翻傾力的大小以及與水平線夾角(+)。并可由式(3-8)計算出每一舉升角所對應(yīng)的值。
2)油缸行程計算
在中:
得: (3-10)
又
得: (3-11)
在中:
(3-12)
由式(3-10)及(3-12),可求出每一舉升角所對應(yīng)的值。若設(shè)最小舉升角對應(yīng)油缸長,最大舉升角對應(yīng)油缸長為,則油缸行程為:
(3-13)
3)油缸推力計算
在中:
(3-14)
以三角臂為分離體,忽略各鉸接處摩擦阻力矩,對點取矩,即,
則:
由于 =
得
(3-15)
(3-16)
由有式(3-15)與式(3-16)便可求出油缸推力P和油缸與垂線夾角
4)拉桿拉力計算
以三角臂為分離體,忽略各鉸鏈處摩擦阻力矩,對點取矩,即,
則
由于 =
(3-17)
與水平面夾角 (3-18)
由式(3-17)及式(3-18)便可求出拉桿拉力及相應(yīng)夾角。
3.3.3傾卸機構(gòu)受力計算
由于油缸最大舉升力及最大拉桿拉力均出現(xiàn)在的初始位置,所以計算受力時時,只要計算初始位置(時)即可。
已知參數(shù)如下:
mm, mm, mm, mm, mm
mm, mm, mm,
由圖中結(jié)構(gòu)可知:
mm
mm
?。┤潜蹖噹Φ挠嬎?
當(dāng)時,由公式(3-7)可得:
mm
由公式(3-9)可得:
2)油缸行程計算
由式(3-10)、(3-11)和(3-12)可得
當(dāng)時,
mm
3)油缸推力計算
由式(3-14)、(3-6)、(3-15)(3-16)可得:
當(dāng)時,
N
N
4)拉桿拉力計算
由式(3-17)(3-18)可得:
當(dāng)時,N
3.3.4 傾卸機構(gòu)參數(shù)校核計算
1)三角臂的校核
選用經(jīng)過調(diào)質(zhì)處理10mm厚的Q345優(yōu)質(zhì)碳素結(jié)構(gòu)鋼的鋼板,兩個相同的三角形鋼板中間通過三根軸銷連接,銷軸材料選用45經(jīng)過調(diào)質(zhì)處理優(yōu)質(zhì)碳素結(jié)構(gòu)鋼,為改裝設(shè)計時具有通用性,銷軸直徑統(tǒng)一選用30mm,外套一個外徑40mm屈服強度為[]=335MPa,選擇安全系數(shù)為2,其許用剪切應(yīng)力為:[]=0.5[]=167.5Mpa,剪叉臂的剪切應(yīng)力為:[]=0.5[]=167.5Mpa。
三角臂銷軸受最大剪切力:
MPa
2)拉桿的校核
拉桿選用45優(yōu)質(zhì)碳素結(jié)構(gòu)鋼薄鋼板,截面尺寸為7mm40mm。最大剪切力為:
mm
至此傾卸機構(gòu)的參數(shù)就確定并校核完成了。
第4章 液壓系統(tǒng)設(shè)計
4.1液壓系統(tǒng)設(shè)計分析
自卸車所采用的油泵、油缸、液壓閥等液壓系統(tǒng)元件均為高度標準化、系列化與通用化且由專業(yè)化液壓件廠集中生產(chǎn)供應(yīng)。因此在自卸車改裝設(shè)計中只需要進行液壓元件選型計算。其主要內(nèi)容包括油缸的直徑與行程、油泵工作壓力、流量、功率以及油箱容積與管路內(nèi)徑等。
4.1.1油缸選型與計算
作為液壓系統(tǒng)執(zhí)行元件的油缸分為活塞式和浮拄式兩類?;钊骄鶠閱蜗蜃饔?,其缸體長度大而伸縮長度小、使用油壓低(一般不超過14MPa)。浮拄式為多級伸縮式油缸,一般有2~5個伸縮節(jié),其結(jié)構(gòu)緊湊,并具有短而粗、伸縮長度大、使用油壓高(可達35MP),易于安裝布置等優(yōu)點。浮拄式油缸又分為單向作用式與雙向作用式。雙向作用式用油壓輔助車廂降落,因此工作平穩(wěn),降落速度快。直推式傾卸機構(gòu)多采用單作用多級油缸;而桿系組合式傾卸機構(gòu)多采用單作用單級油缸。
1. 油缸直徑確定
油缸選型主要依據(jù)自卸車翻傾機構(gòu)所需的最大舉升力以及最大舉升角。按照前者計算確定缸徑;按照后者確定油缸工作行程。
最大舉升力 N
(4-1)
式中:——系統(tǒng)效率,通常按=0.8;
——液壓系統(tǒng)額定工作壓力(MPa),可按10MPa、13.6MPa、15.7Mpa 、20.6Mpa、35Mpa等檔次選取,越高,對密封要求也越高,成本亦隨之上升。
2. 油缸工作行程確定
m (4-2)
式中:——在最大舉升角時舉升油缸兩鉸點間距離,m;
——在舉升角時油缸兩鉸點間距離,m。
4.1.2油泵的選型計算
自卸車常用油泵分為齒輪油泵與柱塞泵兩類。齒輪泵多為外嚙合式,在相同體積下齒輪泵比柱塞泵流量大但油壓低。柱塞泵最大特點是油壓高(油壓范圍16~35MPa),且在最低轉(zhuǎn)速下仍能產(chǎn)生全油壓,固可縮短舉升時間。中輕型自卸車上多采用齒輪泵,常用系列有CB、CBX、CG、CN等。重型自卸車常采用柱塞泵。
1. 油泵工作壓力:
MPa (4-3)
式中:——油缸最大舉升力,N;
——油缸橫截面積,m2。
2. 油泵理論流量
L/min (4-4)
式中:——油缸最大工作容積(m3),按下式計算:
L
、、之單位均為m;
——舉升時間,s,一般要求20s;
——液壓泵容積效率=0.85~0.9。
3. 油泵排量
ml/r (4-5)
式中:——油泵流量,L/min;
——油泵額定轉(zhuǎn)速,r/min。
4. 油泵功率
(4-6)
式中:——油泵最大工作壓力,Pa;
——油泵額定流量,m3/s;
——油泵總效率=0.8。
按以上各式算出、、、后,即可從標準油泵系列中選取所需油泵型號。
4.1.3 油箱容積與油管內(nèi)徑計算
1.油箱容積計算
一般要求油箱容積不得小于全部工作油缸工作容積的三倍,即:
(4-7)
2. 油管內(nèi)徑計算:由
高壓管路內(nèi)徑 (4-8)
式中:——油泵理論流量,L/min;
——高壓管路中油的流速3.6m/s;
低壓管路內(nèi)徑 (4-9)
式中:——低壓管路中油的流速1m/s。
4.2液壓系統(tǒng)參數(shù)計算
4.2.1油缸選型確定
由公式(4-1)、(4-2)可知:
?。┥邫C構(gòu)油缸:
m
m
2)傾卸機構(gòu)油缸:
m
m
根據(jù)L,d計算結(jié)果,舉升有缸選用多級油缸3TGⅠ-E150*1800,傾卸油缸選用單級油缸DJ-J100CE1E。
4.2.2 油泵選型確定
液壓缸工作容積計算:
L
油泵流量:
L
取力器速比:
=1.253
舉升時發(fā)動機轉(zhuǎn)速 r/min
油泵轉(zhuǎn)速 r/min
油泵每轉(zhuǎn)流量:
mL/r
根據(jù)以上計算結(jié)果,選取CB_FC20型齒輪泵,其性能參數(shù)如下:
額定排量=20mL/r17.4(實需排量)
額定壓力=16MPa(實際使用油壓)
額定轉(zhuǎn)速=2000r/min1596r/min(實際轉(zhuǎn)速)
旋向:左旋
該泵所需功率
kW
4.2.3分配閥選型
根據(jù)本車的使用條件與要求,選用通用性強、可靠性好、維修方便的機械操縱分配閥——三位六通液壓閥。
4.2.4油箱容積與管路內(nèi)徑確定
油箱容積L
倍>3倍
高壓油管內(nèi)徑mm
低壓管路內(nèi)徑mm
根據(jù)管路計算結(jié)果選用(HG4-406-66)兩層鋼絲編織膠管作為高壓管,管接頭形式為A型扣壓式;低壓回油管則選用內(nèi)徑的一層鋼絲編織低壓膠管(HG4-406-66)。液壓油冬季選用HJ-20號機械油,夏季HJ-30號機械油。
4.3取力器的選擇
各類專用汽車的專用工作裝置主要由汽車發(fā)動機提供動力源。取力器就是汽車的一種專用動力輸出裝置。它從發(fā)動機取出部分功率,用于驅(qū)動各類液壓泵、真空泵、空壓機以及各種專用汽車工作機械。
4.3.1取力器布置方案選擇
專用車取力總布置方案決定于取力方式。常見的取力方式可分類如下:
從發(fā)動機前端取力的特點是采用液壓傳動,適合于遠距離輸出動力。固此種取力方式常用于由長頭式汽車底盤改裝的大型混泥土攪拌運輸車。
從飛輪后端取力的特點是取力器不受主離合器影響,傳動系統(tǒng)與發(fā)動機直接相連,取力器到工作裝置距離短、傳動系統(tǒng)簡單可靠、取出的功率大、傳動效率高。這種方案應(yīng)用較廣,如平頭式汽車改裝的大、中型混泥土攪拌車等。
從變速器軸取力的布置方案又稱變速器上置式方案。此種方案將取力器疊置于變速器之上,用一惰輪與軸常嚙合齒輪嚙合獲取動力,固需改制原變速器頂蓋。此方案應(yīng)用很廣,如自卸車、冷藏車、垃圾車等一般都從變速器上端取力。
從變速器取力的其他方案
從變速器取力有多種方案,如從中間軸末端取力,從道檔齒輪取力,從上取力等。但最常見的還是從中間軸齒輪取力,稱為側(cè)置式取力,又可分為左側(cè)與又側(cè)布置方案,如CA1091系列汽車取力器、EQ1090系列汽車取力器均為側(cè)置取力器。
傳動軸取力方案是將取力器設(shè)計成一獨立結(jié)構(gòu),設(shè)置于變速器輸出軸與汽車萬向傳動軸之間,該獨立的專用取力裝置固定在汽車車架上不隨傳動軸擺動,也不伸縮。設(shè)計時應(yīng)使用可伸縮的附件傳動軸與其相連,并應(yīng)注意動平衡與隔振消振。
分動器取力布置方案主要用于全輪驅(qū)動的牽引車、汽車起重機等來驅(qū)動絞盤或起重機構(gòu)。從取力器到工作裝置間可采用機械傳動或液壓傳動。
本設(shè)計選用底盤為 CA1091,所以選用從中間軸齒輪取力的布置方案。
4.3.2取力器基本參數(shù)選擇
取力器實質(zhì)上是一種單級變速器。其基本參數(shù)有取力器總速比、額定輸出轉(zhuǎn)矩、輸出軸旋向以及結(jié)構(gòu)質(zhì)量等。
CA1091系列汽車取力器有PT012/252 、PT012/263、PT012/264、PT012/273等30幾種型號。其總速比(發(fā)動機轉(zhuǎn)速與取力器輸出轉(zhuǎn)速之比)有1.06、0.892、1.253、1.199等多種配比。其額定輸出扭矩有210Nm、170Nm、100Nm和392Nm 等。輸出旋向均為與發(fā)動機旋向相反。結(jié)構(gòu)參考質(zhì)量為12、12.5kg。本設(shè)計選用取力器型號為PT012/264,
其總速比為1.253
第5章 高位自卸基本性能參數(shù)計算
專用汽車性能參數(shù)計算是總體設(shè)計的主要內(nèi)容之一,其目的是檢驗整車參數(shù)選擇是否合理,使用性能參數(shù)能否滿足要求。最基本的性能參數(shù)計算包括動力性計算、經(jīng)濟性和穩(wěn)定性計算。
高位自卸汽車整車性能參數(shù)見表5-1,表5-2。
表5-1與計算有關(guān)的整車參數(shù)
名稱
符號
數(shù)值與單位
發(fā)動機最大功率
99
發(fā)動機最大功率時的轉(zhuǎn)速
3000
發(fā)動機最大轉(zhuǎn)矩
372
發(fā)動機最大轉(zhuǎn)矩時的轉(zhuǎn)速
1200~1400
車輪動力半徑
0.493
車輪滾動半徑
0.509
主減速比
6.25
汽車列車迎風(fēng)面積
4.5
汽車列車總質(zhì)量(滿載)
9300
表5-2 高位自卸汽車變速器速比
擋位
1
2
3
4
5
6
倒擋
7.640
4.834
2.856
1.895
1.337
1.000
7.107
5.1 發(fā)動機的動力性
5.1.1發(fā)動機的外特性
發(fā)動機外特性是專用發(fā)動機的外特性是指發(fā)動機油門全開時的速度特性,是汽車動力性計算的主要依據(jù)。
在外特性圖上,發(fā)動機的輸出轉(zhuǎn)矩和輸出功率隨發(fā)動機轉(zhuǎn)速變化的二條重要特性曲線,為非對稱曲線。工程實踐表明,可用二次三項式來描述汽車發(fā)動機的外特性,即
(5-1)
式中:—發(fā)動機輸出轉(zhuǎn)矩,(N·M);
—發(fā)動機輸出轉(zhuǎn)速,(r/min);
、、—待定系數(shù),由具體的外特性曲線決定。
、、可由多種途徑獲得,如果沒有所要的發(fā)動機外特性,但從發(fā)動機銘牌上知道該發(fā)動機的最大輸出功率及相應(yīng)轉(zhuǎn)速和該發(fā)動機的最大轉(zhuǎn)矩及相應(yīng)轉(zhuǎn)速時,可用下列經(jīng)驗公式來描述發(fā)動機的外特性:
(5-2)
式中:—發(fā)動機最大輸出轉(zhuǎn)矩,N·m;
—發(fā)動機最大輸出轉(zhuǎn)矩時的轉(zhuǎn)速,r/min;
—發(fā)動機最大輸出功率時的轉(zhuǎn)速,r/min;
—發(fā)動機最大輸出功率時的轉(zhuǎn)矩,N·m。
由式(1-1)和式(1-2)可得:
(5-3)
如果知道發(fā)動機外特性曲線時,可利用拉格朗日三點插值法求出待定系數(shù)、、。在外特性曲線上選取三個點,即(、)(、)(、),依拉氏插值三項式有:
將上式展開,與(4-1)連例可得:
(5-4)
5.1.2 汽車行駛方程式
高位自卸汽車在直線行駛時,驅(qū)動力和行駛阻力之間存在如下平衡關(guān)系:
(5-5)
式中:——驅(qū)動力,; ——滾動阻力,;
——坡道阻力,; ——空氣阻力,;
——加速阻力,。
換算后的
(5-6)
又因為
(5-7)
將式(5-7)代入(5-6)并整理后,可得:
(5-8)
式中: (5-9)
5.1.3 動力性評價指標
衡量汽車動力性能的評價指標有三個。即最高車速、最大爬坡度和加速性能。
1. 最高車速
根據(jù)最高車速的定義,有a=0,j=0,由式(5-8)可得:
將滾動阻力方程式代入上式,可得:
所以令 (5-10)
又因 , ,可確定專用汽車的最高車速為:
(5-11)
2. 最大爬坡度
當(dāng)汽車以最第擋穩(wěn)定速度爬起時,j=0,,則由式(5-8)可得:
(5-12)
將上式兩邊以為自變量求導(dǎo),可得:
當(dāng)時,a取最大值,此時:
代入式(5-12),可得:
令 (5-13)
對上兩式整理可得:
因為實際上滾動阻力總是存在,并且滾動阻力系數(shù)愈大,汽車爬坡能力愈小,所以上式中應(yīng)取負號,又因,上式可簡化為
或 (5-14)
式中:——專用車輛的最大爬坡度,%。
3. 加速度
專用車輛在平坦路面上的加速度的計算公式如下:
(5-15)
專用車輛在某一擋位加速過程中最大加速度可由的極值點求出,令:
但可得高位自卸汽車在該擋加速時的最大加速度(m/s2)如下:
(5-16)
5.1.4 整車動力性計算
1. 確定動力性計算所需的有關(guān)系數(shù)
系數(shù)、、、和的確定結(jié)果如表5-3所列,回轉(zhuǎn)質(zhì)量換算系數(shù)如表5-4所列。
表5-3動力性計算需確定的有關(guān)系數(shù)
名稱
符號
數(shù)值
發(fā)動機外特性修正系數(shù)
0.90
直接擋時傳動系效率
0.90
其它擋時傳動系效率
0.87
空氣阻力系數(shù)
0.04
滾動阻力系數(shù)
0.0086
0.000148
表5-2質(zhì)量換算系數(shù)的計算結(jié)果
擋位
1
2
3
4
5
6
倒擋
2.781
1.804
1.348
1.193
1.128
1.1
2.597
2.確定發(fā)動機外特性曲線的數(shù)學(xué)方程
采用前面介紹的拉氏三點插值法來擬合該發(fā)動機的外特性曲線。首先在發(fā)動機外特性圖上和表5-1中選擇三點有代表性的坐標值,即
r/min
N·m
r/min
N·m
r/min
N·m
然后利用公式(5-4)計算系數(shù)、、,為方便計算,記
則
即得發(fā)動機外特性的數(shù)學(xué)方程如下:
3.計算各檔位時的系數(shù)、、、和的值
依據(jù)公式(5-9)和(5-10),將上面確定的有關(guān)參數(shù)分別代入計算,計算的結(jié)果
如表5-3所列。
4. 計算高位自卸汽車的最高車速
將直接檔(第6檔位)、、、和值代入式(5-11),可得該高位自卸汽車的最高車速為
5. 計算最大坡度
將最低檔(第一檔位)、、、的值代入式(5-13),可得:
將E代入式(5-14),可得:
高位自卸汽車的最大爬坡度為:
6.最大加速度
將各檔的、、的值代入式(5-16)有:
5.3 高位自卸汽車穩(wěn)定性計算
由普通汽車底盤改裝成的專用汽車,其質(zhì)心位置均較普通貨車為高,其原因是由于副車架或工作裝置的布置,使裝載部分的位置提高了,因此需對整車的靜態(tài)穩(wěn)定性重新進行計算。
對高位自卸汽車,不僅要對運輸狀態(tài)進行穩(wěn)定性計算,對作業(yè)狀態(tài)的穩(wěn)定性也應(yīng)進行計算,如汽車在舉升卸貨時,就有縱向或側(cè)向失穩(wěn)的可能性。
5