農(nóng)作物秸稈顆粒成型機(jī)的機(jī)構(gòu)設(shè)計【說明書+CAD+SOLIDWORKS+仿真】
農(nóng)作物秸稈顆粒成型機(jī)的機(jī)構(gòu)設(shè)計【說明書+CAD+SOLIDWORKS+仿真】,說明書+CAD+SOLIDWORKS+仿真,農(nóng)作物秸稈顆粒成型機(jī)的機(jī)構(gòu)設(shè)計【說明書+CAD+SOLIDWORKS+仿真】,農(nóng)作物,秸稈,顆粒,成型,機(jī)構(gòu),設(shè)計,說明書,仿單,cad,solidworks
附錄A
Integrated design for large-scale opto-mechanical structure
Chris Lucky, James Lee, Bruce King.
Applied Thermal Engineering, 2016, 8(6):556-568.
Abstract: An integrated design method is discussed which thoroughly considers related parameters of the various subsystems in order to optimize the overall system that mainly consists of opto--mechanical structure CAD, CAE and the integrated information platform PDM. Based on the parameter drive of the virtual main model, the method focuses on the model transformation and data share among different design and analysis steps, and so the concurrent simulation and design optimization are carried out. As an example of application, the integrated design for a large-scale opto-mechanical structure is introduced, including optical design, structure design and analysis, which further validates the advantages of the method. Due to comprehensive consideration of the design and analysis process by CAD and CAE based on PDM, the integrated design well attains the structure optimization with high efficiency.
Keywords: integrateddesign,CAD/CAE,large-scale structure,optical instrument.
1. Introduction
Large-scale optical instruments, such as large telescopes and laser communication terminals, belong to the optical-mechanical-electric integrated systems, which are characterized by a large-scale clear aperture and high precision [1, 2]. Development of such instruments involves many key techniques, for instance, large mirror mounting design, high-accuracy special base frame, large precision shafting, high-accuracy driving technique, ultrathin optical component support, active control for thin mirror surface deformation, new material and machine technique, and so on.
In the early design of large-scale optical instruments, due to the lack of design experience, sufficient tolerances are usually scheduled for initial design parameters.After the engineering prototype is completed, its actual test results are contrasted to the design indexes to evaluate the design quality, and some structures and parameters may in turn be modified till the instrument design is in agreement with the design requirements. At present, this method is not encouraged for heavy task, high expense, long cycle, and especially unattainable
optimization of the design results.
With the wide application of computer techniques in various engineering fields, the techniques of CAD and CAE have rapidly developed and led to the innovation in design methods of modern optical instrument structure. In 1980, Jacob M. Miller, American researcher at Honeywell Electro-Optical Systems Center, firstly proposed the concepts and steps of optical-mechanical-electric integrated design method, and enumerated the software used . Meanwhile he successfully analyzed the optical--electric sensor by using the method. Based on CAD/CAE techniques, the optical--mechanical-electric integrated method is used to analyze and simulate the geometry model and finite element model corresponding to the virtual prototype of the instrument, and overall, considers mutual actions and constraints of various subsystems so that the structure parameters are systemically, consistently and dynamically balanced to finally optimize the whole system parameters.
In the paper, we further discuss an integrated design method, which fully considers the model transformation and optimization of the parameters during the entire design process, mainly including opto-mechanical structure design and analysis by CAD, CAE and especially the integrated information share through product data management(PDM). As an example, a large-scale optical instrument structure is developed by this method. The integrated design and simulation are carried out for the overall system.
2. Opto-mechanical structure CAD model
The mechanical structure as the mounting supports the optics system and ensures the optics performance and the system reliability. The constraints of mechanicalstructure are generally divided into two types according to their effectiveness in optics system and application environment, the auxiliary parts of optics system andthe mounting mechanisms of optics components. The opto-mechanical structures include two aspects of static structure and dynamical one, and both of them collaboratively realize the optics performance under the different application conditions. Therefore, the structure design needs to correspondingly consider static stiffness and motion reliability . As regards a large mechanical structure, especially used in special environment such as space conditions, the weight, volume and power consumption become the main factors to be considered, and some special structure, material and technology are to be adopted to optimize the system design.
Figure 1 shows the opto-mechanical structure ACD flow. Firstly, according to the optics system requirements, a concept of structure design is put forward and preliminary calculation is carried out. Then, a virtual prototype of the whole structure is built, including all parts, all components and overall assembly. Finally, after the geometry dimensions and materials are set, the character parameters and structure rationality can be tested and modified in turn. Together with the dynamical performance simulation based on virtual motion model, we can fully check the feasibility of the design project and decide whether or not to change the design details or even the project. Moreover, we can either import the CAD model into FEA software by format transformation such as IGES, STEP, DFX, etc., or transfer the CAD model to FEA software through the interface processing program processor.
Figure 1. The design process of optical structure of ACD.
3. Opto-mechanical structure CAE analysis
Due to the large structure and high precision in a large-scale optical instrument, it is necessary to evaluate the design by finite element analysis method, including structure analysis, thermal analysis and optical analysis. In order to realize the integrated design and system optimization, collaborative simulation and analysis must cover the whole process including project selection, structure design, motion simulation, thermal design, assembly analysis and machining process. Generally, the steps of FEA method consist of solid modeling, generating meshes, setting conditions, solving and post-processing. The structure statics analysis is intended for research into the structure response shown by strain and stress. For a large-scale structure, the gravity effect must be considered, which usually induces the elastic deformation, especially serious in space environment. The dynamics analysis mainly resolves the vibration mode and gains the dynamic rigidity. In other words, the structure weakness as well as the resisting fracture capability can be found through the vibration mode analysis. Conduction, convection and radiation as three heat transfer modes widely exist in large-scale instruments, including steady and transient temperature field . Through the thermal analysis to get thermal performance, the thermal control project of optical instrument can be implemented, which will guide the structure design to meet the requirements of optics performance.
However, no mater which project of the mechanical structure is used, it must center the optics system, and the final analysis is to improve the optical performance. Figure 2 gives relations of the various analysis processes, which can be realized by the data interchange and integration among different software. The Zernike fitting method is usually employed to evaluate the optics performance such as wave front analysis, transformation function, and so on. In Figure 3, an example of our prior FE Aon a large-scale opto-mechanical structure is shown.
Figure.2. Relations among different FEA processes.
4. PDM information integration
PDM as the integrated platform bridges the design and analysis process, and shares data based on the virtual main model, which approaches the parameter drive and real time modification during the whole design .
PDM generally includes CAD model data, technology and file data, FEA analysis and simulation data, etc. Different CAD and CAE subsystems all can share data information by PDM. For instance, in CIMS (computer integrated manufacturing system) based on concurrent engineering, PDM plays a key role for different subsystems with high efficiency. Moreover, with the development of network technology, PDM relies on the CAN (controller area network) and client-server system structure will efficiently build the collaborative and integrated work environment, including project design, system simulation and analysis, product management over the whole lifecycle, and even all the production and service process in the market. Figure 4 shows PDM application in optical instrument design and analysis.
Fig.3. FEA process of a prism assembly.
Fig. 4. Design and simulation based on PDM system.
5.A design example of a large-scale optical structure
We develop a Fizeau interferometer with a 360 mm clear aperture by the integrated design method. Figure 5 shows the design and optimization flow of the reference mirror and mounting structure in the interferometer. We use Wind chill PDM Link to solve the distributed product data management problem, including file management, model data management, information saving and opening. CAD and CAE software include optics design software of CODE V, 2D and 3D design software of AutoCAD and Pro/Engineer, FEA software of Ansys, calculation software of Matlab, etc.
Fig.5. An example of design process: integrated design of reference mirror structure of the Fizeau.
In Figure 5 the arrows show the data flow between different design modules. Firstly, the virtual model of theoptical instrument is conceptually designed by Pro/Engineering and CODE V. Then the finite element method is taken for the static and dynamical analysis, as well as the temperature field analysis, by CAE software of Ansys1.0. Thirdly, the structure and thermal control project is further analyzed and optimized through the CAE result again and again, and various optical aberrations are solved and corrected. Finally, the whole process is based on PDM, and related data between CAD and CAE model share each other till realizing the overall design optimization. The whole design process is under the integrated framework, and the integrated design method through dynamical data interaction highly improves the design efficiency and quality.
6. Conclusions
In order to overcome the disadvantages of the traditional design of large-scale optical instruments, the integrated design method is introduced for complete consideration of the design process to attain the overall system optimization, which mainly consists of three aspects, including opto-mechanical structure CAD, opto-mechanical structure CAE and PDM information integration. With the developments in network and software techniques, the future large-scale optical instrument design will mainly tend towards two aspects. On the one hand, the integrated design based on Web PDM will play an important role in complicated and dynamical data treatment. On the other hand, the Opto-CAD software emerging will better facilitate the visualization and interferometer with a 360 mm clear aperture.
附錄B
大型光電集成的機(jī)械結(jié)構(gòu)設(shè)計
Chris Lucky, James Lee, Bruce King.
Applied Thermal Engineering, 2016, 8(6):556-568.
摘要:討論了充分考慮相關(guān)的參數(shù)是一個集成的設(shè)計方法為各子系統(tǒng)優(yōu)化的整體系統(tǒng),主要由光電—機(jī)械結(jié)構(gòu)CAD,CAE與PDM集成信息平臺?;诘奶摂M模型的參數(shù)驅(qū)動的方法,側(cè)重于模式的轉(zhuǎn)型的設(shè)計和分析的步驟之間的數(shù)據(jù)共享,所以并行仿的設(shè)計進(jìn)行優(yōu)化。作為應(yīng)用實(shí)例,綜合設(shè)計介紹了一種大型光學(xué)機(jī)械結(jié)構(gòu),包括光學(xué)設(shè)計,結(jié)構(gòu)設(shè)計與分析,進(jìn)一步驗(yàn)證了該方法的優(yōu)點(diǎn)。由于分析了基于PDM和CAD和CAE過程的設(shè)計,集成設(shè)計達(dá)到結(jié)構(gòu)優(yōu)化效率高。
關(guān)鍵詞:集成設(shè)計;CAD / CAE;大規(guī)模的結(jié)構(gòu);光學(xué)儀器
1. 簡介
大型光學(xué)儀器,如大型望遠(yuǎn)鏡和激光通信終端,屬于光機(jī)電一體化系統(tǒng),它是通過大規(guī)模的清晰的光圈和高精度的。發(fā)展這種儀器,涉及到許多關(guān)鍵技術(shù),例如,大鏡子安裝設(shè)計,高精度的專用底座,大型精密軸系,高精度驅(qū)動技術(shù),超薄光學(xué)組件的支持,薄鏡面主動控制表面變形,新材料和加工技術(shù)等等。
在大型光學(xué)儀器設(shè)計的早期,由于缺乏設(shè)計經(jīng)驗(yàn),足夠的公差通常安排在初始設(shè)計參數(shù)。工程樣機(jī)完成后,實(shí)際測試結(jié)果對比設(shè)計指標(biāo)來評價設(shè)計質(zhì)量,并和一些參數(shù)的結(jié)構(gòu)可能會被修改到儀器的設(shè)計是在設(shè)計協(xié)議要求。目前,鼓勵繁重的任務(wù),這種方法是不高的費(fèi)用,長周期和特別是高不可攀的優(yōu)化設(shè)計結(jié)果。隨著計算機(jī)技術(shù)在各個工程領(lǐng)域的廣泛應(yīng)用,CAD和CAE技術(shù)的快速發(fā)展,LED的創(chuàng)新現(xiàn)代光學(xué)儀器結(jié)構(gòu)設(shè)計方法。1980,雅各伯米勒,在霍尼韋爾電子光學(xué)系統(tǒng)中心的美國研究人員,首先提出了的概念和光機(jī)電一體化設(shè)計的方法和步驟列舉了應(yīng)用軟件。同時,他成功地分析了光—利用電傳感器的方法?;贑AD/CAE技術(shù),光學(xué)—-機(jī)電一體化的方法用于分析和模擬幾何模型和有限元模型對應(yīng)的儀器的虛擬樣機(jī),總體而言,考慮各子系統(tǒng)的相互作用和約束結(jié)構(gòu)參數(shù)進(jìn)行了系統(tǒng)的,一致的和動態(tài)平衡,最后,優(yōu)化整個系統(tǒng)的參數(shù)。
在本文中,我們進(jìn)一步討論一個集成的設(shè)計方法,充分考慮了整個設(shè)計過程中的參數(shù)模型的改造和優(yōu)化的過程,主要包括光學(xué)機(jī)械結(jié)構(gòu)設(shè)計與分析的CAD,CAE技術(shù)特別是集成信息共享通過產(chǎn)品數(shù)據(jù)管理(PDM)。作為一個例子,一個大型光學(xué)儀器結(jié)構(gòu)開發(fā)的方法。對整個系統(tǒng)進(jìn)行了綜合設(shè)計與仿真。
2. 光學(xué)機(jī)械結(jié)構(gòu)CAD模型
機(jī)械結(jié)構(gòu)的安裝支持光學(xué)系統(tǒng)和保證光學(xué)性能和系統(tǒng)的可靠性。機(jī)械約束結(jié)構(gòu)一般分為兩種類型,根據(jù)其有效性在光學(xué)系統(tǒng)和應(yīng)用環(huán)境,光學(xué)系統(tǒng)和輔助部件光學(xué)元件的安裝機(jī)構(gòu)。光機(jī)結(jié)構(gòu)包括靜態(tài)結(jié)構(gòu)和動態(tài)兩方面,都協(xié)同實(shí)現(xiàn)光學(xué)性能的不同條件下的應(yīng)用條件。因此,結(jié)構(gòu)設(shè)計需要相應(yīng)地考慮靜態(tài)和運(yùn)動可靠性的剛度。至于大的機(jī)械結(jié)構(gòu),特別是用于特殊環(huán)境如空間條件,重量,體積和功率消費(fèi)成為要考慮的主要因素,以及一些特殊的結(jié)構(gòu),材料和工藝是采用優(yōu)化的系統(tǒng)設(shè)計。圖1顯示了光機(jī)結(jié)構(gòu)ACD流。首先,根據(jù)光學(xué)系統(tǒng)的要求,一種結(jié)構(gòu)設(shè)計概念的提出和進(jìn)行了初步的計算。然后,一個虛擬的整個結(jié)構(gòu)的原型建立,包括所有的零部件,所有零部件和總體裝配。最后,經(jīng)過幾何尺寸和材料特性和結(jié)構(gòu)參數(shù)設(shè)置大型光電集成的機(jī)械結(jié)構(gòu)設(shè)計理性可以進(jìn)行測試和修改反過來。結(jié)合動力學(xué)基于虛擬運(yùn)動仿真模型的性能,我們完全可以檢查該設(shè)計方案的可行性和決定是否改變設(shè)計細(xì)節(jié)甚至工程。此外,我們可以導(dǎo)入到CAD模型的有限元分析通過格式轉(zhuǎn)換如IGES,DFX,等軟件,或轉(zhuǎn)移的CAD模型的有限元分析軟件通過接口處理程序。
圖1光機(jī)結(jié)構(gòu)ACD的設(shè)計流
3. 光學(xué)機(jī)械結(jié)構(gòu)的CAE分析
由于在一個大型光學(xué)儀器的大型結(jié)構(gòu)和高精度,它是要利用有限元分析方法評價設(shè)計,包括結(jié)構(gòu)分析,熱分析、光學(xué)分析。為了實(shí)現(xiàn)集成和系統(tǒng)的優(yōu)化設(shè)計,協(xié)同仿真和分析必須蓋整個過程包括項目的選擇,結(jié)構(gòu)設(shè)計,運(yùn)動仿真,熱設(shè)計,裝配分析和加工過程。一般來說,有限元方法的步驟包括實(shí)體建模,網(wǎng)格生成,設(shè)置條件,求解和后處理。結(jié)構(gòu)靜力學(xué)分析的目的是研究表明應(yīng)力和應(yīng)變的結(jié)構(gòu)響應(yīng)。一個大型的結(jié)構(gòu),重力的影響必須考慮,這通常導(dǎo)致彈性變形,在空間環(huán)境特別嚴(yán)重的。主要的動力學(xué)分析解決了振動模式和收益的動態(tài)剛度。在其他的話,結(jié)構(gòu)的弱點(diǎn)以及抗骨折能力可通過振動模態(tài)分析。傳導(dǎo),對流和輻射熱為三在大型儀器廣泛存在的傳輸模式,包括穩(wěn)態(tài)和瞬態(tài)溫度場。通過熱分析得到的熱性能,光學(xué)儀器的熱控制項目得以實(shí)施,這將引導(dǎo)結(jié)構(gòu)設(shè)計來滿足光學(xué)性能的要求。然而,無論哪個項目的機(jī)械結(jié)構(gòu),它必須中心光學(xué)系統(tǒng),和最后的分析是提高光學(xué)性能。
圖2給出了各種分析方法的關(guān)系,這是可以實(shí)現(xiàn)的不同軟件間的數(shù)據(jù)交換和集成。澤尼克擬合方法通常是用來評估的光學(xué)性能如波前分析,變換函數(shù),等等。在圖3中,我們現(xiàn)有的有限元分析的一個例子在一個大型的光機(jī)結(jié)構(gòu)表現(xiàn)出。
圖2在不同過程有限元分析的關(guān)系
4. 基于PDM的信息集成
PDM作為集成平臺的橋梁設(shè)計和分析過程,和股票基于虛擬主模型數(shù)據(jù)的方法,其中的參數(shù)驅(qū)動和真實(shí)時間修改整個設(shè)計過程[ 10 ]。PDM一般包括CAD模型數(shù)據(jù),技術(shù)和文件數(shù)據(jù),有限元分析數(shù)據(jù)和模擬數(shù)據(jù),CAD和CAE等不同的子系統(tǒng)都可以共享數(shù)據(jù)通過PDM的信息。例如,在CIMS(計算機(jī)集成制造基于并行工程的系統(tǒng)),為不同的PDM系統(tǒng)中起著關(guān)鍵的作用效率高的子系統(tǒng)。此外,隨著網(wǎng)絡(luò)的發(fā)展PDM技術(shù),依賴于可以(控制器區(qū)域網(wǎng)絡(luò))和客戶機(jī)服務(wù)器系統(tǒng)結(jié)構(gòu)將建立有效的協(xié)作和集成的工作環(huán)境,包括方案設(shè)計,系統(tǒng)的仿真和分析,產(chǎn)品管理整個產(chǎn)品的生命周期,甚至所有的生產(chǎn)和服務(wù)在市場上的過程。圖4顯示了PDM在光學(xué)儀器設(shè)計和分析中的應(yīng)用。
圖3一個棱鏡組件的有限元分析過程
圖4基于PDM系統(tǒng)的設(shè)計與仿真
5. 一個大型的光學(xué)結(jié)構(gòu)設(shè)計實(shí)例
我們開發(fā)了一個斐索干涉儀與一個360毫米口徑的集成設(shè)計方法。圖5顯示的參考設(shè)計和優(yōu)化流程干涉儀鏡子安裝結(jié)構(gòu)。我們使用Windchill PDMLink來解決分布式產(chǎn)品數(shù)據(jù)管理的問題,包括文件管理,模型數(shù)據(jù)管理,信息保存、打開。CAD和CAE軟件包括CODE V光學(xué)設(shè)計軟件,二維和三維設(shè)計軟件AutoCAD和Pro/E,ANSYS有限元軟件,MATLAB計算軟件等。
圖5中的箭頭顯示不同的設(shè)計模塊之間的數(shù)據(jù)流。首先,光學(xué)儀器的虛擬模型的概念設(shè)計的Pro/Engineering CODE V然后有限元方法為靜態(tài)與動態(tài)分析,以及溫度場分析,利用CAE軟件ansys1.0。第三,結(jié)構(gòu)和熱控制項目的進(jìn)一步分析和優(yōu)化通過CAE結(jié)果一次又一次,和各種光學(xué)像差解決和糾正。最后,整個過程是基于PDM,及相關(guān)數(shù)據(jù)CAD和CAE模型之間相互分享到實(shí)現(xiàn)的總體設(shè)計優(yōu)化。整個設(shè)計過程集成的框架下,和集成的設(shè)計方法,通過動態(tài)數(shù)據(jù)交互,大大提高了設(shè)計的效率和質(zhì)量。
圖5設(shè)計過程中的一個例子:在斐索干涉儀采用360毫米通光孔徑的參考鏡結(jié)構(gòu)的一體化設(shè)計
6. 結(jié)論
為了克服大型光學(xué)傳統(tǒng)設(shè)計的缺點(diǎn)工具,集成的設(shè)計方法,介紹了完整的思考設(shè)計過程中,實(shí)現(xiàn)系統(tǒng)的整體優(yōu)化,主要包括三個方面,包括光學(xué)機(jī)械結(jié)構(gòu)CAD,光機(jī)結(jié)構(gòu)CAE與PDM信息集成。隨著網(wǎng)絡(luò)的發(fā)展和軟件技術(shù),基于Web的PDM集成設(shè)計在復(fù)雜和動態(tài)數(shù)據(jù)處理中發(fā)揮重要的作用。
收藏
鏈接地址:http://www.3dchina-expo.com/article/21142053.html