四柱萬(wàn)能液壓機(jī)系統(tǒng)設(shè)計(jì)【YA32-1000KN型四柱萬(wàn)能液壓機(jī)】
四柱萬(wàn)能液壓機(jī)系統(tǒng)設(shè)計(jì)【YA32-1000KN型四柱萬(wàn)能液壓機(jī)】,YA32-1000KN型四柱萬(wàn)能液壓機(jī),四柱萬(wàn)能液壓機(jī)系統(tǒng)設(shè)計(jì)【YA32-1000KN型四柱萬(wàn)能液壓機(jī)】,萬(wàn)能,液壓機(jī),系統(tǒng),設(shè)計(jì),ya32,kn,型四柱
湖南工學(xué)院
畢業(yè)設(shè)計(jì)(論文)
課題名稱 四柱萬(wàn)能液壓機(jī)系統(tǒng)設(shè)計(jì)
專業(yè)名稱
所在班級(jí)
學(xué)生姓名
學(xué)生學(xué)號(hào)
指導(dǎo)老師
完 成 日 期: 20**年5月
摘 要
液壓技術(shù)是現(xiàn)代制造的基礎(chǔ),他的廣泛應(yīng)用,很大程度上代替了普通成型加工,全球制造業(yè)發(fā)生了根本性變化。因此,液壓技術(shù)的水準(zhǔn)、擁有和普及程度,已經(jīng)成為衡量一個(gè)國(guó)家綜合國(guó)力和現(xiàn)代化水平的重要標(biāo)志。為適合這種行勢(shì),需要大量設(shè)計(jì)一些液壓機(jī)的工作系統(tǒng)。本次就是要設(shè)計(jì)一款四柱萬(wàn)能液壓系統(tǒng)。液壓技術(shù)已被世界各國(guó)列為優(yōu)先發(fā)展的關(guān)鍵工業(yè)技術(shù),成為當(dāng)代國(guó)際間科技競(jìng)爭(zhēng)的重點(diǎn)。
本書為機(jī)械類液壓設(shè)計(jì)說(shuō)明書,是根據(jù)液壓設(shè)計(jì)手冊(cè)上的設(shè)計(jì)程序及步驟編寫的。本書的主要內(nèi)容包括:臥式鉆鏜組合機(jī)床液壓系統(tǒng)的設(shè)計(jì)課題及有關(guān)參數(shù);工況分析;液壓缸工作壓力和流量的確定;液壓系統(tǒng)圖的擬定;驅(qū)動(dòng)電機(jī)及液壓元件的選擇;液壓系統(tǒng)主要性能的驗(yàn)算;設(shè)計(jì)體會(huì);參考文獻(xiàn)等。
編寫本說(shuō)明書時(shí),力求符合設(shè)計(jì)步驟,詳細(xì)說(shuō)明了液壓系統(tǒng)的設(shè)計(jì)方法,以及各種參數(shù)的具體計(jì)算方法,如壓力的計(jì)算、各種工況負(fù)載的計(jì)算、液壓元件的規(guī)格選取等。
本書在編寫過(guò)程中,得到黃教授和同學(xué)的大力支持和幫助,在此一起表示衷心的感謝。
由于編寫水平有限,書中難免有缺點(diǎn)和錯(cuò)誤之處,懇請(qǐng)老師批評(píng)指正。
謝謝!
關(guān)鍵字 四柱萬(wàn)能液壓機(jī), 液壓缸, 系統(tǒng)壓力
編 者
20**年 5月
Abstract
The liquid presses the technique is the foundation of the modern manufacturing, his extensive application, the very big degree ancestors substitutes the commonness to model to process, the global manufacturing industry took place the basic sex variety.Therefore, the liquid presses the technical level, owns and universal degree, have already become measure a national comprehensive national strength and modernization level of important marking.In order to suit this kind of line of power, need a great deal of work system that designs some liquids to press the machine.This time is to design a style four the all-powerful liquid of pillarses press the system.The liquid presses the key industry technique that the technique has already been list as by the international community to have the initiative the development, becoming the point of a science and technology competition.
This book presses to design the manual for the machine liquid, pressing to design the design on the manual procedure and the step plaits to write according to the liquid of.The main contents of this book include:The lie type drills the design topic and relevant parameters that the 鏜 combination tool machine liquid presses the system;The work condition analysis;The liquid presses the assurance of an urn of work pressure and discharges;The liquid presses the draw-up of the system diagram;Drive the choice that the electrical engineering and liquids press the component;The liquid presses the main function of system to check to calculate;The design realize;Reference etc..
When plait write this manual, try hard for to match to design the step, elaborate on the liquid to press the design method of the system, and the concrete calculation method of various parameter, press the specification selection of the component such as the calculation, liquid of calculation, various work condition load of pressure etc..
This book gets the relevant teacher and classmate to support strongly and help in weave write process, meaning the heartfelt with gratitude together here.
Because the plait writes the level limited, difficult do not need the place of weakness and mistake in the book, plead the teacher the animadversion correct.
Thanks!
【Key word】 four the all-powerful liquid of pillarses press the machine, the liquid presses the urn, system pressure
IV
目 錄
第一章 設(shè)計(jì)課題及主要技術(shù)參數(shù)、工作原理 5
1.1設(shè)計(jì)課題 5
1.2設(shè)計(jì)參數(shù): 7
第二章 工況分析 8
2.1繪制液壓缸速度循環(huán)圖、負(fù)載圖 8
2.2參數(shù) 8
第三章 確定液壓缸參數(shù) 9
1、初選液壓缸工作壓力 9
2、計(jì)算液壓缸結(jié)構(gòu)尺寸 9
3 主缸的壓制力 10
4 實(shí)際回程 10
5 頂出缸的內(nèi)徑 10
6 頂出缸的面積 10
7 頂出缸 的回程力 10
8 .頂出液壓缸的工作壓力和回程工作壓力: 10
9 液壓缸運(yùn)動(dòng)中供油量 11
第四章 液壓元、輔件的選擇 11
4.1液壓元件的選擇 12
4.2液壓輔件的選擇 13
第五章 液壓系統(tǒng)主要性能驗(yàn)算 16
5.1系統(tǒng)壓力損失計(jì)算 16
5.2系統(tǒng)效率計(jì)算 18
5.3系統(tǒng)發(fā)熱與升溫計(jì)算 19
設(shè)計(jì)心得 20
參考文獻(xiàn) 21
第一章 設(shè)計(jì)課題及主要技術(shù)參數(shù)、工作原理
1.1設(shè)計(jì)課題
設(shè)計(jì)一臺(tái)YA32-1000KN型四柱萬(wàn)能液壓機(jī),設(shè)該四柱萬(wàn)能液壓機(jī)下行移動(dòng)部件重G=1噸,下行行程1.0-1.2m,其液壓系統(tǒng)圖如下
1、 主液壓泵(恒功率輸出液壓泵),2、齒輪泵,3、電機(jī),4、濾油器,5、7、8、22、25、溢流閥,6、18、24、電磁換向閥,9、21、電液壓換向閥,10、壓力繼電器,11、單向閥,12、電接觸壓力表,13、19、液控單向閥,14、液動(dòng)換向閥,15、順序閥,16上液壓缸,17、順序閥,20、下液壓缸,23節(jié)流器,26、行程開(kāi)關(guān)
A、啟動(dòng):電磁鐵全斷電,主泵卸荷。
主泵(恒功率輸出)→電液換向閥9的M型中位→電液換向閥21的K型中位→T
B、液壓缸16活塞快速下行: 2YA、5YA通電,電液換向閥9右位工作,道通控制油路經(jīng)電磁換向閥18,打開(kāi)液控單向閥19,接通液壓缸16下腔與液控單向閥19的通道。
進(jìn)油路:主泵(恒功率輸出)→電液換向閥9→單向閥11→液壓缸16上腔
回油路:液壓缸16下腔→電液換向閥9→電液換向閥21的K型中位→T
液壓缸活塞依靠重力快速下行:大氣壓油→吸入閥13→液壓缸16上腔的負(fù)壓空腔
C.液壓缸16活塞接觸工件,開(kāi)始慢速下行(增壓下行):
液壓缸活塞碰行程開(kāi)關(guān)2XK使5YA斷電,切斷液壓缸16下腔經(jīng)液控單向閥19快速回油通路,上腔壓力升高,同時(shí)切斷(大氣壓油 →吸入閥13 →上液壓缸16上腔)吸油路。
進(jìn)油路:主泵(恒功率輸出)→電液換向閥9→單向閥11→液壓缸16上腔
回油路: 液壓缸16下腔→順序閥17→電液換向閥9→電液換向閥21的K型中位→T
D、保壓:
液壓缸16上腔壓力升高達(dá)到預(yù)調(diào)壓力,電接觸壓力表12發(fā)出信息,2YA斷電,液壓缸16進(jìn)口油路切斷,(單向閥11 和吸入閥13的高密封性能確保液壓缸16活塞對(duì)工件保壓,利用液壓缸16上腔壓力很高,推動(dòng)液動(dòng)換向閥14下移,打開(kāi)外控順序閥15,防止控制油路使吸入閥1誤動(dòng)而造成液壓缸16上腔卸荷) 當(dāng)液壓缸16上腔壓力降低到低于電接觸壓力表12調(diào)定壓力,電接觸壓力表12又會(huì)使2YA通電,動(dòng)力系統(tǒng)又會(huì)再次向液壓缸16上腔供應(yīng)壓力油……。
主泵(恒功率輸出)主泵→電液換向閥9的M型中位→電液換向閥21的K型中位→T,主泵卸荷 。
E、保壓結(jié)束、液壓缸16上腔卸荷后:
保壓時(shí)間到位,時(shí)間繼電器發(fā)出信息, 1YA通電(2TA斷電),液壓缸16上腔壓力很高,推動(dòng)液動(dòng)換向閥14下移,打開(kāi)外控順序閥15,主泵1→電液壓換向閥9的大部分油液經(jīng)外控順序閥15流回油箱,壓力不足以立即打開(kāi)吸入閥13通油箱的通道,只能先打開(kāi)吸入閥13的卸荷閥(或叫卸荷閥的卸荷口),實(shí)現(xiàn)液壓缸16上腔(只有極小部分油液經(jīng)卸荷閥口回油箱)先卸荷,后通油箱的順序動(dòng)作,此時(shí):
主泵1大部分油液→電液壓換向閥9→外控順序閥15→T
F、液壓缸16活塞快速上行:
液壓缸16上腔卸壓達(dá)到吸入閥13開(kāi)啟的壓力值時(shí),液動(dòng)換向閥14復(fù)位,外控制順序閥15關(guān)閉,切斷主泵1大部分油液→電液換向閥9→外控順序閥15→T的油路,實(shí)現(xiàn):
進(jìn)油路:主泵1→電液換向閥9→液控單向閥19→液壓缸16下腔
回油路:液壓缸16上腔→吸入閥13→T
G、頂出工件:
液壓缸16活塞快速上行到位,碰行程開(kāi)關(guān)1XK,1YA斷電,電液換向閥9復(fù)位,4YA通電,電液換向閥21右位工作
進(jìn)油路:主泵1→電液換向閥9的M型中位→電液換向閥21→液壓缸20下腔
回油路:液壓缸20上腔→電液換向閥21→T
H、頂出活塞退回:3YA通電,4YA斷電,電液換向閥21左位工作
進(jìn)油路:主泵1→電液換向閥9的M型中位→電液換向閥21→液壓缸20有桿腔
回油路:液壓缸20無(wú)桿腔→電液換向閥21→T
K、壓邊浮動(dòng)拉伸:
薄板拉伸時(shí),要求頂出液壓缸20無(wú)桿腔保持一定的壓力,以便液壓缸20活塞能隨液壓缸16活塞驅(qū)動(dòng)動(dòng)模一同下行對(duì)薄板進(jìn)行拉伸,4YA通電,電液壓換向閥21右位工作,6YA通電,電磁閥24工作,溢流閥25調(diào)節(jié)液壓缸20無(wú)桿腔油墊工作壓力。
進(jìn)油路:主泵1→電液換向閥9的M型中位→電液換向閥21→液壓缸20無(wú)桿腔
吸油路:大氣壓油→電液壓換向閥21→填補(bǔ)液壓缸20有桿腔的負(fù)壓空腔
1.2設(shè)計(jì)參數(shù):
液壓系統(tǒng)最高壓力P=32mPa 一般選用P=20-25mPa
主液壓缸公稱噸位1000KN
主液壓缸用于沖壓的壓制力與回程力之比值為5-10%,塑料制品的壓制力與回程力之比為2%,
頂出缸公稱頂出力取主缸公稱噸位的五分之一
頂出缸回程力為主液壓缸公稱噸位的十五分之一
主液壓缸 快速空行程 V=100mm/s
工作行程 V=10mm/s
回程 V=80mm/s
頂出液壓缸 頂出行程 V=80mm/s
回程 V=120mm/s
設(shè)計(jì)要求:
設(shè)計(jì)選擇組成該液壓系統(tǒng)的基本液壓回路并說(shuō)明液壓系統(tǒng)的工作原理,設(shè)計(jì)計(jì)算選擇液壓元件,進(jìn)行液壓系統(tǒng)穩(wěn)定性校核,繪液壓系統(tǒng)圖及液壓集成回路圖,設(shè)計(jì)液壓裝置和液壓集成塊,編寫液壓系統(tǒng)設(shè)計(jì)說(shuō)明書。
第二章 工況分析
2.1繪制液壓缸速度循環(huán)圖、負(fù)載圖
2.2參數(shù)
1、選取參數(shù)
取動(dòng)摩擦系數(shù)fd=0.1 ,靜摩擦系數(shù)fj=0.2 ,η缸=0.9 ,
V快=100mm/s , V工=10mm/s,令起動(dòng)時(shí)間不超過(guò)0.2秒,
選取工作壓力F=25000N(按負(fù)載20000-30000計(jì)算得)
選 取P=20-25mPa 取P1=25mPa
2、計(jì)算摩擦力
靜摩擦力F2=Gfj=98000.2=1960N
動(dòng)摩擦力F3=Gfd=98000.1=980N
3、確定液壓缸的推力
啟動(dòng)推力F啟=F2/η缸=1960÷0.9=2178N,取整為2180N
加速推力F加=(F3+F4)/η缸=1644N,取整為1640N
快進(jìn)推力F快=F3/η缸=980÷0.9=1089,取整為1090N
工進(jìn)推力F工=(F1+F3)/η缸=39978N,取整為40000N
第三章 確定液壓缸參數(shù)
1、初選液壓缸工作壓力
按照液壓缸工作時(shí)的作用力F工參考課本270頁(yè)表9~1,初定工作壓力P1=20~25mpa ,取P1=25mpa;選用A1/2=A2差動(dòng)液壓缸.
2、計(jì)算液壓缸結(jié)構(gòu)尺寸
主缸的內(nèi)徑
根據(jù)GB/T2348-1993,取標(biāo)準(zhǔn)值 D主 =250mm
活塞桿直徑
主缸
根據(jù)GB/T2348-1993,取標(biāo)準(zhǔn)值
則有液壓缸各部分面積如下:
3 主缸的壓制力
4 實(shí)際回程
R主回==190000N=190KN
5 頂出缸的內(nèi)徑
根據(jù)GB/T2348-1993,取標(biāo)準(zhǔn)值
m
根據(jù)GB/T2348-1993,取標(biāo)準(zhǔn)值
6 頂出缸的面積
頂出缸的頂出力
7 頂出缸 的回程力
R頂回=
8 .頂出液壓缸的工作壓力和回程工作壓力:
Pa
9 液壓缸運(yùn)動(dòng)中供油量
(1) 快速空行
(2) 工作進(jìn)程進(jìn)出油量
(3) 主缸回程
(4) 頂出缸進(jìn)排油量
頂出行程
頂出缸退回
第四章 液壓元、輔件的選擇
4.1液壓元件的選擇
1.液壓系統(tǒng)快速空程供油方式:
由于供油量大,不宜采用由液壓泵供油方式,利用主液壓缸活塞等自重快速下行,形成負(fù)壓空腔,通過(guò)吸入閥從油箱吸油,同時(shí)使液壓系統(tǒng)規(guī)格降低檔次。
2.選定液壓泵的流量及規(guī)格:
設(shè)計(jì)的液壓系統(tǒng)最高工作壓力主液壓缸工作行程,主液壓缸的無(wú)桿腔進(jìn)油量為:
3.主液壓缸的有桿腔進(jìn)油量為:
4.頂出液壓缸頂出行程的無(wú)桿腔進(jìn)油量為:
設(shè)選主液壓缸工作行程和頂出液壓缸頂出行程工作壓力最高()工件頂出后不需要高壓。主液壓缸工作行程(即壓制)流量為29.46L/min,主液壓缸工作回程流量為4.56L/min,選用160BGY14-1B型電液比例斜盤式軸向變量柱塞泵。雖然在只有156L/min,主液壓缸活塞返回速度有所降低,在工作壓力為時(shí),流量降低40%,仍可獲101L/min的流量,基本滿足主液壓缸工作回程4.56L/min、滿足工進(jìn)流量29.46L/min的進(jìn)給設(shè)計(jì)要求。由于選用電液比例控制,獲節(jié)能高效效益。
5.液壓泵的驅(qū)動(dòng)功率及電動(dòng)機(jī)的選擇:
主液壓缸的壓制與頂出液壓缸的頂出工作壓力均為P=20×106Pa;主液壓缸回程工作壓力為P=6.64×106Pa頂出液壓缸退回行程工作壓力17.1×106Pa,液壓系統(tǒng)允許短期過(guò)載,因此,快速進(jìn)退選P=6.64×106Pa,q=156L/min, 工進(jìn)選P=25.12×106Pa,q=101L/min,液壓泵的容積效率ηv=0.92,機(jī)械效率ηm=0.95,兩種工況電機(jī)驅(qū)動(dòng)功率為:
P工 > P快 電動(dòng)機(jī)允許短期過(guò)載,選取37KW的Y250M-6型電機(jī)。若設(shè)定工作壓力在
(25-32)×106Pa, 選取55KW的Y280M-6型電機(jī)。
液壓缸的壓制工作壓力為P=25.8mPa;液壓缸回程工作壓力為P=0.64mPa快速進(jìn)退選P=2.88×106Pa,q=250L/min, 工進(jìn)選P=25.8×106Pa,q=157.5L/min,液壓泵的容積效率ηv=0.92,機(jī)械效率ηm=0.95,兩種工況電機(jī)驅(qū)動(dòng)功率為
(按等值功率計(jì)算:
K——電動(dòng)機(jī)過(guò)載系數(shù) 直流電動(dòng)機(jī)K=1.8-2.5,若考慮到網(wǎng)絡(luò)電壓波動(dòng),一般取 K=1.5-2.0 取
選取液壓泵的驅(qū)動(dòng)電機(jī),首先應(yīng)考慮等值功率和運(yùn)動(dòng)循環(huán)動(dòng)作階段的最大功率。本課題運(yùn)動(dòng)循環(huán)動(dòng)最大功率是終壓功率67.73/0.95×0.92=77.5KW,持續(xù)時(shí)間只有2秒鐘時(shí)間,不在電動(dòng)機(jī)允許的短期過(guò)載范圍內(nèi),不能按等值功率計(jì)值的短期過(guò)載處理,也不能按運(yùn)動(dòng)循環(huán)選取250BGY14-1B型電液比例斜盤式軸向變量柱塞泵電動(dòng)機(jī)的最大驅(qū)動(dòng)功率,只能按短折算系數(shù)為1.7的短期過(guò)載設(shè)計(jì),選取45KWY280M-2型交流異步電動(dòng)機(jī)驅(qū)動(dòng)液壓泵。)
查手冊(cè)選取Y280M-6型電機(jī),其額定功率為37KW。
4.2液壓輔件的選擇
1、根據(jù)系統(tǒng)的工作壓力和通過(guò)各元、輔件的實(shí)際流量,選擇的元、輔件的規(guī)格如下表所示。
序號(hào)
元 件 名 稱
實(shí)際流量
規(guī)格
備注
1
斜盤式軸向柱塞泵
160L/min
160BGY14-1B
2
齒輪泵
10L/min
CB-10
55KW
3
電動(dòng)機(jī)
Y250M-6
4
濾油器
250L/min
WU-250×180F
5
電液比例溢流閥
160L/min
YF-B20H
6
直動(dòng)式溢流閥
10L/min
Y-Hb6F
7
三位四通電液換向閥
160L/min
34BYM-H20-T
8
單向閥
160L/min
DF-B20K3
9
電接觸壓力表
KF-L8/30E
10
外控順序閥
160L/min
X4F-B20F-Y
11
液控單向閥
600L/min
自制
12
二位三通電磁換向閥
10L/min
23D-10B
13
液控單向閥
160L/min
DFY-B20H2
14
內(nèi)控外泄式順序閥
160L/min
X4F-B20F-Y1
15
主液壓缸
外購(gòu)
16
頂出液壓缸
外購(gòu)
17
三位四通電液換向閥
160L/min
34BYK-H20-T
18
阻尼器
25L/min
自制
19
二位二通電磁換向閥
25L/min
22D-10B
20
先導(dǎo)式溢流閥
160L/min
YF-B20H
21
直動(dòng)式溢流閥
25L/min
22
行程開(kāi)關(guān)
Y-Hb6F
外購(gòu)3個(gè)
2、油箱容量:按經(jīng)驗(yàn)公式計(jì)算油箱容量
上油箱容積:
下油箱容積:
液壓缸流量表
動(dòng) 作 順 序
流進(jìn) L/min
流出 L/min
主液
壓缸
快速下行
160+694=754
271.2
工作行程
101
36.4
回 程
160
444.8
頂出
液壓缸
頂出行程
101
61.8
退回行程
160
261.5
第五章 液壓系統(tǒng)主要性能驗(yàn)算
5.1系統(tǒng)壓力損失計(jì)算
管道直徑按選定元件的接口尺寸確定為d=20mm,進(jìn)、回油管長(zhǎng)度都定為L(zhǎng)=2m,油液的運(yùn)動(dòng)粘度取,油液的密度取。
1、判斷流動(dòng)狀態(tài)
進(jìn)、回油管路中所通過(guò)的流量以快退時(shí)回油量q=444.8L/min為最大,由雷諾數(shù) 可知
因?yàn)镽e〉2300,故各工況下的進(jìn)、回油路中油液的流動(dòng)狀態(tài)為紊流。
2、計(jì)算系統(tǒng)壓力損失
由于工進(jìn)時(shí),油路流量少,可忽略不計(jì);以下只計(jì)算快進(jìn)時(shí)的系統(tǒng)壓力損失。
A、進(jìn)油路中的壓力損失
快進(jìn)時(shí)油液在管道中的流速為
a、計(jì)算沿程壓力損失
△P=
b、局部壓力損失按經(jīng)驗(yàn)公式計(jì)算
△P1=0.1△P=
c、閥類元件產(chǎn)生的局部壓力損失
根據(jù)公式 ,其中為額定壓力損失,由手冊(cè)查得電液換向閥9、21單向閥11、行程閥26的額定壓力損失均為,q為實(shí)際流量,為標(biāo)準(zhǔn)流量。
△P進(jìn)=△P+△P1+
B、回油路中的壓力損失
回油路中油液的流速為
回油路的雷諾數(shù)為
沿程壓力損失為△P=
局部壓力損失為△P1=0.1△P沿=
閥類元件損失為△P閥=
△P回=△P+△P1+△P閥=
C、快進(jìn)的總的壓力損失
△P總=△P進(jìn)+△P回=
△P總小于工進(jìn)壓力損失設(shè)定值△P1,壓力損失校驗(yàn)合格。
5.2系統(tǒng)效率計(jì)算
在一個(gè)工作循環(huán)周期中,工進(jìn)時(shí)間最長(zhǎng),因此,用工進(jìn)時(shí)的效率來(lái)代表整個(gè)循環(huán)的效率。
1、計(jì)算回路效率
按公式來(lái)計(jì)算,其中
和————液壓缸的工作壓力和流量;
、、和——每個(gè)液壓泵的工作壓力和流量;
大流量泵的工作壓力就該泵通過(guò)順序閥17卸荷時(shí)產(chǎn)生的壓力損失,因此它的的值為
工進(jìn)時(shí),液壓缸回油腔的壓力為P2=1MPa,進(jìn)油腔的壓力為
P1=
小流量泵在工進(jìn)時(shí)的工作壓力,等于液壓缸工作腔壓力加上進(jìn)油路上的壓力損失,即
=
則回路效率為
2、計(jì)算系統(tǒng)效率
取雙聯(lián)葉片泵的總效率η泵=0.70,液壓缸的總效率η缸=0.90,則系統(tǒng)效率η為
η=η泵η缸 =0.70.90.35=0.22
5.3系統(tǒng)發(fā)熱與升溫計(jì)算
系統(tǒng)發(fā)熱計(jì)算和系統(tǒng)效率計(jì)算同樣原因,也只考慮工進(jìn)階段。
工進(jìn)時(shí),液壓泵的輸入功率為
P入W
此時(shí),系統(tǒng)所產(chǎn)生的熱流量為
Q= P入(1-η)=121 (1-0.22)=94.38W
系統(tǒng)中的油液溫升為
℃
其中傳熱系數(shù)K=15W/(㎡·℃)。本系統(tǒng)溫升很小,符合要求
設(shè)計(jì)心得
我們的設(shè)計(jì)課題雖然牽涉的知識(shí)面相對(duì)較窄,但是我們的設(shè)計(jì)液壓控制系統(tǒng)還是采用近兩年比較興新液壓閥進(jìn)行設(shè)計(jì),所以設(shè)計(jì)起來(lái)不是很簡(jiǎn)單,但在黃教授的指導(dǎo)和同學(xué)的幫助下完成了設(shè)計(jì)。這也是我們?cè)诋厴I(yè)這一段時(shí)間里重新的溫習(xí)和鞏固以前所學(xué)的東西,其體會(huì)有以下幾點(diǎn):
1) 通過(guò)設(shè)計(jì)使所學(xué)的液壓傳動(dòng)以及相關(guān)知識(shí)得到了進(jìn)一步的鞏固,加深和擴(kuò)展,同時(shí)也學(xué)會(huì)了一些怎樣將理論知識(shí)運(yùn)用于生產(chǎn)實(shí)際的方法。
2) 在設(shè)計(jì)實(shí)踐中學(xué)習(xí)和掌握了通用液壓元件的選用,各類閥體的用途、組合方法和設(shè)計(jì)技能。
3) 在這次的設(shè)計(jì)中不僅僅是液壓方面的知識(shí),對(duì)計(jì)算機(jī)會(huì)圖等各方面的知識(shí)、運(yùn)用于熟悉設(shè)計(jì)資料以及進(jìn)行經(jīng)驗(yàn)估算等放面進(jìn)行一次調(diào)練,同時(shí),通過(guò)設(shè)計(jì)培養(yǎng)了分析和解決生產(chǎn)實(shí)際問(wèn)題的能力。
4) 通過(guò)這次設(shè)計(jì)使我感到自己掌握的知識(shí)和我在生產(chǎn)實(shí)踐中的距離,在今后的工作中依然得繼續(xù)學(xué)習(xí)。
參考文獻(xiàn)
1、《液壓系統(tǒng)設(shè)計(jì)簡(jiǎn)明手冊(cè)》,楊培元、朱福元主編,機(jī)械工業(yè)出版社。
2、《液壓傳動(dòng)系統(tǒng)》第三版,官忠范主編,機(jī)械工業(yè)出版社。
3、《液壓傳動(dòng)設(shè)計(jì)手冊(cè)》,煤炭工業(yè)部、煤炭科學(xué)研究院上海研究所主編,上??茖W(xué)技術(shù)出版社。
4、《袖珍液壓氣動(dòng)手冊(cè)》第二版,劉新德主編,機(jī)械工業(yè)出版社。
5、《液壓傳動(dòng)課程設(shè)計(jì)指導(dǎo)書》,高等工程專科學(xué)校機(jī)制及液壓教學(xué)研究會(huì)液壓組主編。
6、《液壓傳動(dòng)與氣壓傳動(dòng)》第二版,何存興、張鐵華主編,華中科技大學(xué)出版社。
7、《金屬鉆削機(jī)床液壓傳動(dòng)》,章宏甲主編,江蘇科學(xué)技術(shù)出版社。
8、《工程機(jī)械液壓與液力傳動(dòng)》,李芳民主編,人民交通出版社。
9、《新編液壓工程手冊(cè)》,雷天覺(jué)主編,北京理工大學(xué)出版社。
10、《液壓系統(tǒng)設(shè)計(jì)圖集》,周士昌主編,機(jī)械工業(yè)出版社。
26
附件圖紙
液壓系統(tǒng)工作原理.dwg
液壓系統(tǒng)裝配圖A0.dwg
液壓系統(tǒng)原理圖A1.dwg
謝謝朋友對(duì)我文章的賞識(shí),充值后就可以下載說(shuō)明書。我這里還有一個(gè)壓縮包,里面有相應(yīng)的word說(shuō)明書(附帶:外文翻譯)和CAD圖紙。需要壓縮包的朋友請(qǐng)聯(lián)系QQ客服:1459919609。下載后我可以將壓縮包免費(fèi)送給你。需要其他設(shè)計(jì)題目直接聯(lián)系!?。?
英文文獻(xiàn)
HYDRAULIC EQUIPMENT OF PLIABLE FORCE FOR MAINTENANCE AND MECHANICAL WORKING
Abstract.The collaboration between the Hydraulic and Pneumatic Acting Systems Engineering Department and the SC HYDRAMOLD SRL firm led to the realization of some performances products on the hydraulics and pneumatics segment.The paper proposes to offer the most representative hydraulic pliable equipments force for mechanical working and maintenance.A big part from the hydraulic equipments is patented or claim of patent,the technology and technological originality being totally part of those.
Because the paper has a prevalent technical character,in the presentation will be got off especially the performance characteristics of the areas used and the hydraulic equipments advantages of the pliable force.
Key words:hydraulic equipment,maintenance,mecanical working.
1. Introduction
The multi-functional modular equipments,pliable,for mechanical working, that are based on the hydraulic drive are destined to the manufacturing plant IMM also to the manufacturing plant of maintenance of the big company framework from energetic,petrochemistry,transport.All the equipments what are adduced in work are submitted in the framework of DISAHP research and make the study of other papers.Taking account the finite space of a work,there will be proposed from the large palette of hydraulic pliable equipments force a new or modernized equipments series from each segment developed by the SC HYDRAMOLD SRL firm(pressure sources,hydraulic presses,hydraulic tools, hydraulic equipment of 3000 bar,hydraulic lift equipment),following as in the next works it will be published other modern hydraulic equipments.
2.Hydraulic Equipments Analysis Force
2.1 Pressure Sources
The pressure sources of the force hydraulic equipments yielded by the SC HYDRAMOLD SRL are:the hydraulic acting units that have electric or thermal engine and the hydraulic manual or pedal pumps.
·Hydraulic drive unit description with electric engine
The electro-hydraulic drive units HUEH are high pressure sources for the hydraulic cylinder supplying with simple or double action from some equipments structure,hydraulic installations or appliances,and they work with relative small rate flow and pressures of until 700 bars,(Fig.1).The working developed pressure can be adjusted depending on task:30-700 bar.
Fig.1–The electro-hydraulic drive unit[1]
1- electric engine;2-multiplier;3-oil receiver;4-operator’s desk.
Table 1
·Advantages
The electro-hydraulic drive unit advantages(HUEH)are:they offer the possibility to maintain into the pressure,respectively the hydraulic obstruct of the task and dispose of a precise setting of the pressure depending on the task until 700 bar;it allows the permanent control of the cylinder stroke and also the automatic commutation from the first step to the second pressure step respectively from the fast start to the technological breakthrough;it allows electric remote command,while the charging voltage is of 24 Vcc,having the oil temperature monitoring possibility and the automatic disconnect to the value of 55°C;it has the hydraulic components of the hydraulic panel(pump,valve, slide valve)and it functions in optimal behavior to maximum from the half nominal pressure,providing for advanced reliability;it has a low level noise (under 70 db);it confers the simultaneous supplying possibility of 2,3 or 4 cylinders-through to an attached branch[2,3].
·The hydraulic drive unit description with heat engine
The hydraulic drive units with heat engine(HUMUTH)proceed from the new products scale with a distinguished resilience into the field,and they function with small flow rate and pressures of until 700 bar,(fig.2).
Fig.2–The hydraulic drive unit with heat engine[4]
1- heat engine;2-multiplier;3-operator’s desk;4-oil receiver.
Table 2
The hydraulic drive unit characteristics with heat engine[1].
The hydraulic drive unit with heat engine has a manual command for thestart and the changing of the pressure steps from the 1st step to the 2nd step itmakes manual too[4].
·Advantages
The hydraulic drive unit offers similar advantages with those presented at the hydraulic drive unit with electric engine.The additional advantage consists of the mobility into the field as the result of a low weight and it doesn’t depend of a fixed power source(for example the connected of the unit to the line system).
2.2.Hydraulic Presses
The hydraulic press workshop HPH-075 is composed from a stand shut framework(fixed top traverse columns,adjustable bottom traverse,basic plate) removable,a hydraulic cylinder with double action HCHD-075.150 installed on a transversal carriage,a plates set,pressing bolts and nuts,(Fig.3).
Fig.3.–The hydraulic press 75[tf]
1- Basic plate;2-Columns;3-Bottom traverse;4-Hydraulic cylinder HCHD-075.125;
5-Top traverse;6-Pressing bolts;7-Pressing plates.
Table 3
The hydraulic press characteristics[1].
Among the direct applications of this hydraulic presses deserve reminded: pressing and gear puller off of the transmission shafts from the gear boxes; pressing and puller ball bearings from the attack pinions from the tapering groups;pressing and extraction from jammed subsets;cold deformation for various proof sample.
·Advantages
The hydraulic press has a modular construction,removable,having an indexed settlement system of the inferior traverse,at the various determinate heights of range of 75[mm].
The transverse carriage of press represents an easy settlement system of the hydraulic cylinder position allowing thus the pressing axle regulation;
The hydraulic press has plates set,bolts and pressing nuts for the realization of all technological operations;
From the press project result an optimal report between its weight and achieved force owing to the acting to maximum pressures 700 bar,as effect of a reduced weight it is easy of carried.
2.3.Hydraulic tools
The hydraulic tool scale used in the mechanical processing and maintenance is various,with many applications in the mechanical engineering.There are reminded among these hydraulic tools:the device of the bending pipes and the hydraulic device of cutting.
·The Device Description of Bending Pipes
The bending template,fixed on acting rod of the hydraulic cylinder and having the suitable skewers profile so pipe dimension as well as inflexion beam,it will act over pipe that follows to be distorted;the pipe guides on the two ferries of the rest,fixed between the device plates.The superior plate of the appliance it can bate to allow the introduction of the template and of the ferries of the rest(Fig.5).
The device of bending pipes type HDIT.M-020.300 is an equipment, hydraulic driven and it is destined to the bending at cold of the installations pipes in the maintenance and repairs sectors.
Table 4
The device characteristics of bending pipes[1]
Fig.5.–The device of bending pipes[1]
1- Tripod;2-Fixed plate;3-Turnover plate;4-Bolt;
5-Hydraulic cylinder HCHD-020.300,6-Form.
Table 5
The working characteristics of device of bending pipes HDIT.M-020.300[1]
·The Hydraulic Device Description of Cutting 20[tf]
The device is formed from a metallic body,realized through welded construction,a hydraulic cylinder with simple action HCHS-020.028,a movable knife jointly mounted with the cylinder rod and a fixed knife body, (Fig.6).
The hydraulic cylinder acting it realizes through the connection to a highpressure source(manual pump HPHM-700 or hydraulic pedal pump HPHP-700),through a fast coupling and hydraulic flexible pipe.
The semi-finished product it installs between the two knives,while the cutting knife and the counter-knife establish the debiting of the semi-finished product from the steel.The retirement of the cutting knife it realizes by a spring incorporated into a cylinder.The hydraulic device of cutting HFMO-020.028 is a hydraulic drive device,used in the producing processes and maintenance with the view of cuttings at cold of the circular,square,hexagonal and flat bars steel.The movable knife run is of 28[mm]and the maximum pressure 700[bar],[1].
Fig.6.–The hydraulic device of cutting 20[tf]
1--2-Movable knife;3-Fixed knife;4-Feed nipple with oil under pressure.
Table 6
The working characteristics of hydraulic device of cutting type HFMO-020.028,[1].
·Advantages
There are important to notice,among the hydraulic device advantages of cutting:the compact structure and modern design;the easy drivability and the reduced weight;it eliminates the useless physicals work of the operator;it lowers the appropriated time procedure.
Scaling Behaviour of Pressure-Driven Micro-Hydraulic Systems
ABSTRACT
This paper presents a lumped network approach for the modelling and design of micro-hydraulic systems.A hydraulic oscillator has been built consisting of hydraulic resistors,capacitors and transistors(pressure controlled valves).The scaling of micro-hydraulic networks consisting of linear resistors,capacitors and inertances has been studied.An important result is that to make smaller networks faster,driving pressures should increase with reducing size.
1 INTRODUCTION
Micro-hydraulic systems can be modeled and designed using a generalized physical system description[1,2].This approach is based on the assumption that it is possible to
separate and concentrate properties of a system into interconnected subsystems.It has proven its great value in the design of electronic circuits.The lumped network approach also offers a powerful design tool for microfluidic systems[3-5].To illustrate the far-reaching analogy between different physical domains,we have rebuilt an electronic astable multivibrator network in the hydraulic domain[4].The system consists of hydraulic capacitors, resistors,transistors and(parasitic)coils.Based on this micro-hydraulic system the scaling behaviour of low Re (Reynolds number)hydraulic systems has been analyzed.
2 HYDRAULIC FUNDAMENTALS
In every physical domain a conserved quantity q can be distinguished[1].The flow is the rate of exchange of this conserved quantity between subsystems.In the hydraulic domain the flow variable is the volume flow. The effort is the tension that governs the exchange of the conserved quantity between subsystems.In the hydraulic
domain the effort variable is the pressure p[Pa].
2.1 Hydraulic Resistors
The hydraulic resistor physically is a liquid flow restriction,symbolically represented as in fig.1a.For a linear flow resistor,the resistance R is defined by:
Where p12=p1–p2 is the pressure drop across the resistor, and the volume flow through the resistor.At sufficient low Re the flow in a duct is laminar and fully developed (Poisseuille flow),and the pressure drop p across the duct is proportional to the volume flow rate.For a duct of arbitrary cross section the resistance is given by[6]:
Where f is the Fanning friction factor,L is the length of the channel,μis the viscosity of the liquid,Dh the hydrodynamic diameter,and A the cross sectional area.For a laminar fully developed flow the product f*Re=k,a dimensionless constant only depending on the shape of the cross section.The hydraulic resistors we have tested,were realized by anisotropic KOH-etching into a<100>silicon wafer and closing of the channel by anodic bonding of a glass wafer onto the silicon.Fig.1b-d show a side view,a cross section and a top view of the implemented restrictionsrespectively.
Figure 1:Hydraulic resistor.a)Symbolic representation
b)Side-view of realized restrictions c)Cross section of
ealized restrictions d)Top view of a realized restriction.
For these triangular channels with a top width of 2w the resistance is given by:
The limits of the linear regime have been determined analytically and verified experimentally for liquids[7]. Entrance and exit effects result in a non-linear relation
between p12 and.They can be neglected if the channel is long compared to the hydrodynamic entrance length.At low Re the entrance length Lhy increases linearly with Re.For circular channels with a diameter d this is expressed by [6]:
2.2 Hydraulic Capacitors
The hydraulic capacitor physically is an elastic membrane across which a pressure difference can be maintained.It is symbolically represented in fig.2a.The capacitor establishes a relation between the pressure drop across the membrane and the displaced volume.For a linear capacitor the capacitance C is defined by:
Where V is the volume of the displaced liquid by bending of the membrane.Because the volume V is created by accumulation of the volume flow,(5)can be rewritten to
find a relation between effort and flow:
Figure 2:Hydraulic capacitor a)Symbolic representation b)Cross section of a capacitor realized in glass-silicon-glass technology,showing the deflection of the membrane under influence of a pressure difference.
Fig.2b shows a cross section of a capacitor realized in a glass-silicon-glass sandwich.For deflections smaller than the thickness of the membrane there is a linear relation between the applied pressure difference and the membrane deflection.In this case a simple expression for the capacitance can be derived:
Where a is the radius of the membrane,and D is the flexural rigidity of the membrane,defined by ,in which E [Pa] is the Young's modulus,ν[-] the Poission's ratio,and h[m] the thickness of the membrane.
中文翻譯
柔韌力液壓設(shè)備維修和機(jī)械加工
摘要:液壓和氣動(dòng)代理系統(tǒng)工程部門和SC HYDRAMOLD SRL公司的合作實(shí)現(xiàn)了一些表演上的液壓與氣動(dòng)領(lǐng)域的產(chǎn)品. 文章提出了提供最具代表性的為機(jī)械加工和維護(hù)液壓圓滑設(shè)備力量。液壓設(shè)備的大部分組成部分是有專利的或是專利的要求,技術(shù)或技術(shù)創(chuàng)新即這些專利的整個(gè)部分
因?yàn)槲恼掠幸粋€(gè)普遍的技術(shù)特征,在演示文稿將完成特別是使用地區(qū)和液壓設(shè)備的柔韌力優(yōu)勢(shì)的性能特點(diǎn)。
關(guān)鍵詞:液壓裝置、維修、力學(xué)性能工作。
1.介紹
使機(jī)械工作具有柔韌性的多功能模塊化設(shè)備,這在液壓傳動(dòng)基礎(chǔ)上,實(shí)現(xiàn)了IMM的生產(chǎn)廠從有力的石化,交通方面的公司向維護(hù)大公司的框架生產(chǎn)公司的轉(zhuǎn)化。所有的同時(shí)考慮到有限的工作空間,將有提出從大型液壓設(shè)備的調(diào)色板柔韌力由公司的SC HYDRAMOLD?。樱遥蹋▔毫υ矗簤簷C(jī),液壓工具,液壓設(shè)備而開(kāi)發(fā)的每一段新的或現(xiàn)代化的設(shè)備系列3000酒吧,液壓升降設(shè)備),在它下面將公布下一液壓設(shè)備等現(xiàn)代作品。在工作中用到的設(shè)備呈現(xiàn)在DISAHP框架研究報(bào)告中并對(duì)其他文件作了研究。
2. 液壓設(shè)備分析力
2.1壓力源
力量水力設(shè)備的壓力來(lái)源由SC HYDRAMOLD SRL產(chǎn)生了是:有電或熱量引擎和水力指南或腳蹬泵浦的水力代理單位
·與電引擎的水力驅(qū)動(dòng)裝置描述
電動(dòng)液壓的驅(qū)動(dòng)裝置HUEH是供應(yīng)以簡(jiǎn)單或雙重行動(dòng)的液壓缸的高壓來(lái)源從一些設(shè)備結(jié)構(gòu)、水力設(shè)施或者裝置,并且他們與直到700個(gè)酒吧一起使用相對(duì)小率流程和壓力, (Fig.1)。工作被發(fā)展的壓力可以根據(jù)任務(wù)被調(diào)整:30-700吧。
Fig.1–電動(dòng)液壓的驅(qū)動(dòng)裝置[1]
1- 電引擎; 2乘算器; 3油接收器; 4-工作臺(tái)。
表 1
電動(dòng)液壓驅(qū)動(dòng)驅(qū)動(dòng)裝置特點(diǎn)[1]
油接收器[l]
10;20;30;40
電引擎[kw]
1.5-4
高壓流速[l/min]
0.5-1.5
低壓流速[l/min]
6-16
最大壓力[吧]
700
重量[kg]
84-176
· 優(yōu)勢(shì)
電動(dòng)液壓的驅(qū)動(dòng)裝置好處(HUEH)是:他們提供可能性維護(hù)入壓力,各自水力阻礙任務(wù)并且根據(jù)直到700吧的任務(wù)處理壓力的一個(gè)精確設(shè)置; 它允許圓筒沖程的永久控制并且從第一步的自動(dòng)換向到第二壓力步分別從快速的開(kāi)始到技術(shù)突破; 它允許電遙遠(yuǎn)的命令,而電荷電勢(shì)是24 Vcc,有油溫監(jiān)視可能性和自動(dòng)斷開(kāi)對(duì)55°C的價(jià)值; 它有水力盤區(qū)(泵浦、閥門,滑閥)的液壓元件,并且它在優(yōu)選的行為起作用對(duì)從半公稱壓力的最大值,提供先進(jìn)的可靠性; 它有低級(jí)噪聲(在70 db以下); 它同時(shí)供應(yīng)的可能性的2,3或4圓筒通過(guò)對(duì)一個(gè)附上分支[2,3]。
·用熱引擎的液壓驅(qū)動(dòng)裝置描述
用熱引擎(HUMUTH)的液壓驅(qū)動(dòng)裝置從與卓越的韌性的新產(chǎn)品標(biāo)度入領(lǐng)域和他們進(jìn)行起作用與直到700吧小流速和壓力, (fig.2)。
圖2-熱發(fā)電機(jī)的液壓驅(qū)動(dòng)裝置[4]
1 - 熱機(jī),2加速器; 3操作臺(tái),4油接收器
表 2
用熱引擎[1]的水力驅(qū)動(dòng)裝置特征
油接收器[L]
10
電動(dòng)發(fā)動(dòng)機(jī)功率[kw]
1.2
高壓流速[L/min]
0.35
低壓流速[L/min]
3.3
最大壓力[巴]
700
重量[Kg]
40
用熱機(jī)的液壓驅(qū)動(dòng)裝置有一個(gè)開(kāi)始的命令,壓力的變化從第一步到第二步同樣使人工操作化[4].
·優(yōu)點(diǎn)
水力驅(qū)動(dòng)裝置提供與那些的相似的好處被提出在與電引擎的水力驅(qū)動(dòng)裝置的優(yōu)點(diǎn)。另外的好處包括流動(dòng)性到由于低重量的領(lǐng)域里和它不依靠一個(gè)固定的電源(例如被連接對(duì)于系統(tǒng)的單元)。
2.2液壓機(jī)
液壓機(jī)是用于各種各樣的應(yīng)用的設(shè)備例如:冷的變形、切割,固化,煞車皮和推力板, 壓力軸承拉出器。這些水壓機(jī)可以為其他適合他們是需要的機(jī)械的應(yīng)用按提取強(qiáng)迫要求作用。
液壓機(jī)描述
水壓機(jī)車間HPH-075從被關(guān)閉的立場(chǎng)組成框架(固定的上面橫斷專欄、可調(diào)整的底部橫斷,基本的板材) 可移動(dòng)的,在具有雙重作用的HCHD-075.150的液壓缸上安裝的一橫截支架,被設(shè)置的板材,按螺栓和螺母, (Fig.3)。
Fig.3.–液壓機(jī)75[tf]
1基本盤; 2專欄;3底部橫斷;4液壓缸HCHD-075.125;
5上部橫斷; 6壓力螺栓; 7壓力板材。
表3
液壓機(jī)特點(diǎn)
力[tf]
70
沖程[mm]
150
壓力[bar]
700
在直接應(yīng)用這之中水壓機(jī)該當(dāng)提醒:脫套和齒輪制帽工人從工具箱的傳動(dòng)軸; 從攻擊小齒輪末端的緊迫和制帽滾珠軸承從逐漸變細(xì)的小組; 從被阻塞的子集的按和提取; 各種各樣的證明樣品的冷的變形。
優(yōu)點(diǎn)
液壓機(jī)具有模化構(gòu)造,可移動(dòng),并且有下等橫斷的一個(gè)被標(biāo)注的解決系統(tǒng),在各種各樣的75 [mm]的范圍的確定高度。鍛壓橫向支架代表液壓缸位置的一個(gè)容易的解決系統(tǒng)因而允許緊迫的軌章程; 液壓機(jī)有實(shí)現(xiàn)所有技術(shù)操作的板材設(shè)置,螺栓和緊迫螺母;
從這個(gè)項(xiàng)目結(jié)果,因?yàn)闇p少的重量的作用它是容易運(yùn)載,在它的重量和達(dá)到的力量之間的一個(gè)優(yōu)選的報(bào)告由于行動(dòng)對(duì)最大值達(dá)到700吧。
2.3 液壓工具
在機(jī)械加工和維修的過(guò)程中使用的工具是多種多樣的,許過(guò)應(yīng)用在機(jī)械工程里。那些在液壓工具之中被提到的:彎曲管道的設(shè)備和切割的液壓設(shè)備。
·彎曲的管子的設(shè)備描述
彎曲的模板,固定在液壓缸的代理標(biāo)尺和有適當(dāng)?shù)拇璩?,因此用管道輸送維度并且變化射線,它將行動(dòng)在跟隨被變形的管子; 在休息的二條輪渡的管子指南,固定在設(shè)備板材之間。它可能降低允許模板介紹和剩余裝置的優(yōu)越板材(Fig.5)的渡輪。
彎曲管子類型設(shè)備HDIT.M 020.300是液壓驅(qū)動(dòng)的設(shè)備,并且它注定在維護(hù)的并且修理區(qū)段的設(shè)施管子寒冷時(shí)彎曲。
表 4
彎管的設(shè)備特點(diǎn)描述[1]
過(guò)載[tf]
200
沖程[mm]
60
管直徑
2”-4”
壓力[bar]
700
圖5 –彎管設(shè)備[1]
1三腳架; 2固定板材; 3轉(zhuǎn)板; 4螺栓;
5 HCHD-020.300,6型液壓缸
表 5
HDIT.M-020.300型彎管設(shè)備的工作特點(diǎn)[1]
管的彎曲
外徑
[toli/mm]
3/8’
[17]
1/2’’
[21,25]
3/4’’
3/4’’
[26,4]
1’’
[33,5]
1’’1/4
[42,25]
1’’1/2
[48,25]
2’’
[60]
壁厚
[mm]
2,75
3,25
3,5
4
4
4,25
4,5
形式
曲率半徑
[mm]
50
64
90
120
150
200
235
最大彎曲角度
[grad]
120
指導(dǎo)數(shù)
2支 , 普遍的
·切割20[tf]的力的液壓設(shè)備的描述
設(shè)備有一個(gè)金屬體,通過(guò)被焊接的構(gòu)造實(shí)現(xiàn),這個(gè)構(gòu)造就是簡(jiǎn)型HCHS-020.028液壓缸。一個(gè)可以一個(gè)可以移動(dòng)的刀具和液壓桿和一個(gè)固定的刀體裝在一起,(如圖6).
實(shí)行操作的液壓缸通過(guò)與一個(gè)高壓源(HPHP-700的人工泵或液壓腳蹬泵),通過(guò)一個(gè)快速的聯(lián)結(jié)和液壓的靈活的管子。
半成品位于兩把刀具之間,而切割刀和柜臺(tái)刀建立從鋼的半成品中除去,它安裝在二把刀子之間的半成品,而切刀和柜臺(tái)刀子建立扣除從鋼的半成品。它在春天之前體會(huì)被合并到圓筒里切刀的退休。切開(kāi)HFMO-020.028水力設(shè)備是一個(gè)水力推進(jìn)設(shè)備,用于生產(chǎn)的過(guò)程和維護(hù)有切口看法在鋼圓,方形,六角和的扁桿的寒冷??梢苿?dòng)的刀子奔跑是28 [mm]和最大壓力700 [吧], [1]。
圖6-切割20[tf]的力的液壓設(shè)備
1-金屬體;2-移動(dòng)刀;3-固定刀;4-用壓力油的油口。
表 6
HFMO-020.028型切割型號(hào)的液壓設(shè)備的工作特點(diǎn)。[1]
·優(yōu)點(diǎn)
在這些液壓設(shè)備的優(yōu)點(diǎn)中有一些重要的值得去注意:緊密的結(jié)構(gòu);簡(jiǎn)單的操作和減少的重量;它可以除去工人無(wú)用的勞作;降低了時(shí)間過(guò)程。
壓力驅(qū)動(dòng)的微型液壓系統(tǒng)的縮放行為
摘要
本文提出了一種對(duì)微型液壓系統(tǒng)的成型與設(shè)計(jì)的一種混合網(wǎng)狀方法。被修造了的包括水力電阻器、容積和交換器(壓力控制閥)的一臺(tái)液壓振蕩器。包括線性電阻器、容積和的微水力網(wǎng)絡(luò)結(jié)垢被學(xué)習(xí)了。一個(gè)重要結(jié)果是使更小的網(wǎng)絡(luò)更加快速的那,推進(jìn)壓力應(yīng)該增加與減少大小。
1介紹
微型液壓系統(tǒng)建模這種假設(shè)和設(shè)計(jì),可以使用一個(gè)廣義的物理系統(tǒng)的描述[1,2]。這種方法是基于一種假設(shè),這種假設(shè)就是它可能分開(kāi)和集中系統(tǒng)的部分進(jìn)入相互聯(lián)系的子系統(tǒng),它已證明了其在電路設(shè)計(jì)中的電路設(shè)計(jì)中的大的價(jià)值。泵的網(wǎng)狀方法的液壓系統(tǒng)[3-5]給微流體系統(tǒng)的功能強(qiáng)大的設(shè)計(jì)工具。為了說(shuō)明不同
物理領(lǐng)域的深遠(yuǎn)的比喻,我們已在液壓領(lǐng)域建立了一個(gè)電子無(wú)穩(wěn)態(tài)多諧網(wǎng)絡(luò)[4].
液壓系統(tǒng)由容器,阻抗器,(寄生)卷組成?;谖⑿鸵簤合到y(tǒng)的低重(雷諾數(shù))的液壓系統(tǒng)進(jìn)行分析。
2液壓原理
在每個(gè)物理領(lǐng)域被保存的數(shù)量q可以被區(qū)分的[1]。流速在子系統(tǒng)之間保存的數(shù)量交換率。在液壓領(lǐng)域流程可變物是容量流。 作用是處理被保存的數(shù)量交換在子系統(tǒng)之間的緊張。在液壓領(lǐng)域作用可變物是壓力p [Pa]。
2.1液壓阻抗器
液壓阻抗是對(duì)液體流動(dòng)的限制,象征性地在表示在fig.1a中,因?yàn)榫€性流阻,阻力R定義為:
那里p12=p1–p2是橫跨阻抗器的降壓,和 容量流經(jīng)阻抗器。在充足低關(guān)于在輸送管的流程是層流和充分發(fā)展的(流程),并且橫跨輸送管的降壓p與體積流率成比例。對(duì)于任意橫剖面輸送管給抵抗[6] :
這里f是扇面摩擦因子, L是渠道的長(zhǎng)度、μ是液體的黏度, Dh水力直徑和A是橫截面面積。為層流充分發(fā)展的流程產(chǎn)品f*Re=k,一個(gè)無(wú)維的僅常數(shù)根據(jù)橫剖面的形狀。我們對(duì)非均質(zhì)性的酸值蝕刻測(cè)試了,體會(huì)入渠道和結(jié)束由玻璃簿塊正極接合的在硅上的水力阻抗器。Fig.1b-d展示一張側(cè)視圖、被使用的一個(gè)橫剖面和一張頂視圖。
圖1 :水力阻抗器.a)象征性的代表b)受制約的邊角度c)橫剖面d)頂視圖。
對(duì)于與2w的頂面寬度的這些三角渠道的阻抗:
分析確定了線性體的極限并且為液體[7]實(shí)驗(yàn)性地被核實(shí)了。 入口和出口作用導(dǎo)致了在 p12和之間的非線性聯(lián)系。如果渠道是長(zhǎng)的與水力入口長(zhǎng)度比較,它們可以被忽略。由于低雷諾數(shù),入口長(zhǎng)度Lhy隨著雷諾數(shù)線性地增加。帶有直徑d的圓形渠道可以被[6]表達(dá):
2.2液壓容器
液壓容器完全是壓力區(qū)別可以被維護(hù)的一個(gè)彈性膜。在fig.2a中容器象征性地代表建立在降壓橫跨面和被偏移的容量之間的聯(lián)系。對(duì)于一臺(tái)線性電容器電容C可以被定義:
這里V是被偏移的液體的容量通過(guò)的彎曲膜。由于容量v由容量流的儲(chǔ)積造成, (5)是被重寫并發(fā)現(xiàn)在作用和流程之間的聯(lián)系:
圖2 :在玻璃硅玻璃技術(shù)下的電容器的水力電容器a)象征b)橫剖面,顯示膜的偏折在壓力區(qū)別的影響之下。
Fig.2b顯示了在玻璃硅玻璃夾心中的電容器的一個(gè)橫剖面。對(duì)于偏折小于膜的厚度有在應(yīng)用的壓力區(qū)別和膜偏折之間的一個(gè)線性關(guān)系。在這種情況下電容的一個(gè)簡(jiǎn)單表達(dá)式可以獲得:
那里a膜的半徑和D是膜的彎曲堅(jiān)硬,定義由, E [Pa]是典型、ν 的比率和h [m]膜的厚度。
收藏