高中數(shù)學(xué) 第一章 計(jì)數(shù)原理 1_1_2 分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理的綜合應(yīng)用課件 新人教A版選修2-3
《高中數(shù)學(xué) 第一章 計(jì)數(shù)原理 1_1_2 分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理的綜合應(yīng)用課件 新人教A版選修2-3》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第一章 計(jì)數(shù)原理 1_1_2 分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理的綜合應(yīng)用課件 新人教A版選修2-3(45頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、1.1.2分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理的綜合應(yīng)用 自主學(xué)習(xí) 新知突破 1進(jìn)一步理解和掌握分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理2能根據(jù)具體問題的特征,選擇兩種計(jì)數(shù)原理解決一些實(shí)際問題 現(xiàn)有高一四個(gè)班的學(xué)生34人,其中一、二、三、四班各7人、8人、9人、10人,他們自愿組成數(shù)學(xué)課外小組,若推選兩人做小組組長,這兩人需來自不同的班級(jí)問題有多少種不同的選法? 提示分六類,每類又分兩步,從一班、二班學(xué)生中各選1人,有78種不同的選法;從一、三班學(xué)生中各選1人,有79種不同的選法;從一、四班學(xué)生中各選1人,有710種不同的選法;從二、三班學(xué)生中各選1人,有89種不同的選法;從二、四班學(xué)生中各選1人,有
2、810種不同的選法;從三、四班學(xué)生中各選1人,有910種不同的選法,所以共有不同的選法N787971089810910431(種) 兩個(gè)計(jì)數(shù)原理在解決計(jì)數(shù)問題中的方法 1分類要做到“_”,分類后再對(duì)每一類進(jìn)行計(jì)數(shù),最后用分類加法計(jì)數(shù)原理求和,得到總數(shù)2分步要做到“_”完成了所有步驟,恰好完成任務(wù),當(dāng)然步與步之間要相互獨(dú)立分步后再計(jì)算每一步的方法數(shù),最后根據(jù)分步乘法計(jì)數(shù)原理,把完成每一步的方法數(shù)相乘,得到總數(shù)應(yīng)用兩個(gè)計(jì)數(shù)原理應(yīng)注意的問題不重不漏步驟完整 兩個(gè)計(jì)數(shù)原理的使用方法(1)合理分類,準(zhǔn)確分步處理計(jì)數(shù)問題,應(yīng)扣緊兩個(gè)原理,根據(jù)具體問題首先弄清楚是“分類”還是“分步”,接下來要搞清楚“分類”
3、或者“分步”的具體標(biāo)準(zhǔn)是什么分類時(shí)需要滿足兩個(gè)條件:類與類之間要互斥(保證不重復(fù));總數(shù)要完備(保證不遺漏)也就是要確定一個(gè)合理的分類標(biāo)準(zhǔn)分步時(shí)應(yīng)按事件發(fā)生的連貫過程進(jìn)行分析,必須做到步與步之間互相獨(dú)立,互不干擾,并確保連續(xù)性 (2)特殊優(yōu)先,一般在后解含有特殊元素、特殊位置的計(jì)數(shù)問題,一般應(yīng)優(yōu)先安排特殊元素,優(yōu)先確定特殊位置,再考慮其他元素與其他位置,體現(xiàn)出解題過程中的主次思想 (3)分類討論,數(shù)形結(jié)合,轉(zhuǎn)化與化歸分類討論就是把一個(gè)復(fù)雜的問題,通過正確劃分,轉(zhuǎn)化為若干個(gè)小問題予以擊破,這是解決計(jì)數(shù)問題的基本思想數(shù)形結(jié)合,轉(zhuǎn)化與化歸也是化難為易,化抽象為具體,化陌生為熟悉,化未知為已知的重要思
4、想方法,對(duì)解決計(jì)數(shù)問題至關(guān)重要 解析:由分步乘法計(jì)數(shù)原理得55555556.答案:A 2(2015鄭州高二檢測)某校開設(shè)A類選修課3門,B類選修課4門,一位同學(xué)從中共選3門若要求兩類課程中各至少選一門,則不同的選法共有()A30種B35種C42種D48種 解析:選3門課程,要求A,B兩類至少各選1門,可分為兩種情況,一類是A類選修2門,B類選修1門,共有3412種選法;另一類是A類選修1門,B類選修2門,共有3618種選法根據(jù)分類加法計(jì)數(shù)原理可得符合條件的選法共有121830(種)答案:A 3編號(hào)為A,B,C,D,E的五個(gè)小球放在如圖所示五個(gè)盒子中要求每個(gè)盒子只能放一個(gè)小球,且A不能放1,2號(hào)
5、,B必須放在與A相鄰的盒子中則不同的放法有_ 解析:以小球A放的盒為分類標(biāo)準(zhǔn),共分為三類:第一類,當(dāng)小球放在4號(hào)盒內(nèi)時(shí),不同的放法有3216(種);第二類,當(dāng)小球放在3號(hào)盒內(nèi)時(shí),不同的放法有332118(種);第三類,當(dāng)小球放在5號(hào)盒內(nèi)時(shí),不同的放法有3216(種)綜上所述,不同的放法有618630(種)答案:30種 4由數(shù)字1,2,3,4(1)可組成多少個(gè)3位數(shù);(2)可組成多少個(gè)沒有重復(fù)數(shù)字的3位數(shù);(3)可組成多少個(gè)沒有重復(fù)數(shù)字的三位數(shù),且百位數(shù)字大于十位數(shù)字,十位數(shù)字大于個(gè)位數(shù)字 解析:(1)百位數(shù)共有4種選法;十位數(shù)共有4種選法;個(gè)位數(shù)共有4種選法,根據(jù)分步乘法計(jì)數(shù)原理知共可組成43
6、64個(gè)3位數(shù)(2)百位上共有4種選法;十位上共有3種選法;個(gè)位上共有2種選法,由分步乘法計(jì)數(shù)原理知共可組成沒有重復(fù)數(shù)字的3位數(shù)43224(個(gè))(3)組成的三位數(shù)分別是432,431,421,321共4個(gè). 合作探究 課堂互動(dòng) 組數(shù)問題有0,1,2,8這9個(gè)數(shù)字(1)用這9個(gè)數(shù)字組成四位數(shù),共有多少個(gè)不同的四位數(shù)?(2)用這9個(gè)數(shù)字組成四位的密碼,共有多少個(gè)不同的密碼?思路點(diǎn)撥四位密碼的首位可為0,四位數(shù)的首位不能為0. (1)題中未強(qiáng)調(diào)四位數(shù)的各位數(shù)字不重復(fù),故只需強(qiáng)調(diào)首位不為0,依次確定千、百、十、個(gè)位,各有8,9,9,9種方法所以共能組成8935 832個(gè)不同的四位數(shù)(2)與(1)的區(qū)別在
7、于首位可為0.所以共能組成946 561個(gè)不同的四位密碼 規(guī)律方法對(duì)于組數(shù)問題的計(jì)數(shù):一般按特殊位置(末位或首位)由誰占領(lǐng)分類,每類中再分步來計(jì)數(shù);但當(dāng)分類較多時(shí),可用間接法先求出總數(shù),再減去不符合條件的數(shù)去計(jì)數(shù) 1(1)用0,1,2,3,4這五個(gè)數(shù)字可以組成多少個(gè)無重復(fù)數(shù)字的四位密碼?四位數(shù)?(2)從1到200的這200個(gè)自然數(shù)中,每個(gè)位數(shù)上都不含數(shù)字8的共有多少個(gè)? 解析:(1)完成“組成無重復(fù)數(shù)字的四位密碼”這件事,可以分為四步:第一步,選取左邊第一個(gè)位置上的數(shù)字,有5種選取方法;第二步,選取左邊第二個(gè)位置上的數(shù)字,有4種選取方法;第三步,選取左邊第三個(gè)位置上的數(shù)字,有3種選取方法;第四
8、步,選取左邊第四個(gè)位置上的數(shù)字,有2種選取方法由分步乘法計(jì)數(shù)原理,可以組成不同的四位密碼共有N5432120個(gè) 完成“組成無重復(fù)數(shù)字的四位數(shù)”這件事,可以分四步:第一步,從1,2,3,4中選取一個(gè)數(shù)字作千位數(shù)字,有4種不同的選取方法;第二步,從1,2,3,4中剩余的三個(gè)數(shù)字和0共四個(gè)數(shù)字中選取一個(gè)數(shù)字作百位數(shù)字,有4種不同的選取方法;第三步,從剩余的三個(gè)數(shù)字中選取一個(gè)數(shù)字作十位數(shù)字,有3種不同的選取方法;第四步,從剩余的兩個(gè)數(shù)字中選取一個(gè)數(shù)字作個(gè)位數(shù)字,有2種不同的選取方法由分步乘法計(jì)數(shù)原理,可以組成不同的四位數(shù)共有N443296個(gè) (2)本題應(yīng)分3類來解決:第1類,一位數(shù)中,除8以外符合要求
9、的數(shù)有8個(gè);第2類,兩位數(shù)中,十位數(shù)除0,8以外有8種選法,而個(gè)位數(shù)除8以外有9種選法,故兩位數(shù)中符合要求的數(shù)有8972個(gè);第3類,三位數(shù)中,百位數(shù)為1,十位數(shù)和個(gè)位數(shù)上的數(shù)字除8以外都有9種選法,故三位數(shù)中,百位數(shù)為1的符合要求的數(shù)有9981個(gè); 百位數(shù)為2的數(shù)只有200這一個(gè)符合要求故三位數(shù)中符合要求的數(shù)有81182個(gè)由分類加法計(jì)數(shù)原理知,符合要求的數(shù)字共有87282162個(gè) 種植與涂色問題用n種不同的顏色為下列兩塊廣告牌著色(如圖甲、乙),要求在A,B,C,D四個(gè)區(qū)域中相鄰(有公共邊界)的區(qū)域不用同一顏色 (1)若n6,則為甲圖著色時(shí)共有多少種不同的方法;(2)若為乙圖著色時(shí)共有120種
10、不同方法,求n. 思路點(diǎn)撥 解析:(1)對(duì)區(qū)域A,B,C,D按順序著色,為A著色有6種方法,為B著色有5種方法,為C著色有4種方法,為D著色有4種方法,由分步乘法計(jì)數(shù)原理,共有著色方法6544480(種)(2)對(duì)區(qū)域A,B,C,D按順序著色,為A著色有n種方法,為B著色有n1種方法,為C著色有n2種方法,為D著色有n3種方法, 利用分步乘法計(jì)數(shù)原理,不同的著色方法數(shù)是:n(n1)(n2)(n3)120,解得(n23n)(n23n2)120.即(n23n)22(n23n)1200.(n23n10)(n23n12)0.n23n100或n23n120(舍去),解得n5或n2(舍去),故n5. 規(guī)律方
11、法本題是一個(gè)涂色問題,是計(jì)數(shù)問題中的一個(gè)難點(diǎn)求解時(shí)要注意以下兩點(diǎn):一要考察全面;二要注意策略如上述解法把A,D作為討論區(qū)域,求解時(shí)優(yōu)先考察這兩個(gè)區(qū)域 2.如圖有4個(gè)編號(hào)為1、2、3、4的小三角形,要在每一個(gè)小三角形中涂上紅、黃、藍(lán)、白、黑五種顏色中的一種,并且相鄰(有公共邊界)的小三角形顏色不同,共有多少種不同的涂色方法? 解析:分為兩類:第一類:若1、3同色,則1有5種涂法,2有4種涂法,3有1種涂法(與1相同),4有4種涂法故N1541480種第二類:若1、3不同色,則1有5種涂法,2有4種涂法,3有3種涂法,4有3種涂法故N25433180種綜上可知不同的涂法共有NN 1N2801802
12、60種 兩個(gè)計(jì)數(shù)原理的綜合應(yīng)用假設(shè)在7名學(xué)生中,有3名會(huì)下象棋但不會(huì)下圍棋,有2名會(huì)下圍棋但不會(huì)下象棋,另2名既會(huì)下象棋又會(huì)下圍棋,現(xiàn)從這7人中選2人分別同時(shí)參加象棋比賽和圍棋比賽,共有多少種不同的選法? 思路點(diǎn)撥因有兩人既會(huì)下象棋又會(huì)下圍棋,在選兩人時(shí)要分類討論 規(guī)律方法應(yīng)用分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理的關(guān)鍵是分清“分類”與“分步”使用分類加法計(jì)數(shù)原理時(shí)必須做到不重不漏,各類的每一種方法都能獨(dú)立完成;使用分步乘法計(jì)數(shù)原理時(shí)分步必須做到各步均是完成事件必須的、缺一不可的步驟 3(1)如果一個(gè)三位正整數(shù)如“a1a2a3”滿足a1a2且a3a2,則稱這樣的三位數(shù)為凸數(shù)(如120,343,27
13、5等),那么所有凸數(shù)個(gè)數(shù)是多少?(2)如果一個(gè)三位正整數(shù)如“a1a2a3”滿足a1a2且a3a2,則稱這樣的三位數(shù)為凹數(shù)(如102,323,756等),那么所有凹數(shù)個(gè)數(shù)是多少? 解析:(1)分8類:當(dāng)中間數(shù)為2時(shí),百位只能選1,個(gè)位可選1、0,由分步乘法計(jì)數(shù)原理,有122個(gè);當(dāng)中間數(shù)為3時(shí),百位可選1、2,個(gè)位可選0、1、2,由分步乘法計(jì)數(shù)原理,有236個(gè);同理可得:當(dāng)中間數(shù)為4時(shí),有3412個(gè);當(dāng)中間數(shù)為5時(shí),有4520個(gè);當(dāng)中間數(shù)為6時(shí),有5630個(gè);當(dāng)中間數(shù)為7時(shí),有6742個(gè);當(dāng)中間數(shù)為8時(shí),有7856個(gè);當(dāng)中間數(shù)為9時(shí),有8972個(gè);故共有26122030425672240個(gè) (2)
14、分8類:當(dāng)中間數(shù)為0時(shí),百位可選19,個(gè)位可選19,由分步乘法計(jì)數(shù)原理,有9981個(gè);當(dāng)中間數(shù)為1時(shí),百位可選29,個(gè)位可選29,由分步乘法計(jì)數(shù)原理,有8864個(gè);同理可得:當(dāng)中間數(shù)為2時(shí),有7749個(gè);當(dāng)中間數(shù)為3時(shí),有6636個(gè);當(dāng)中間數(shù)為4時(shí),有5525個(gè); 當(dāng)中間數(shù)為5時(shí),有4416個(gè);當(dāng)中間數(shù)為6時(shí),有339個(gè);當(dāng)中間數(shù)為7時(shí),有224個(gè);當(dāng)中間數(shù)為8時(shí),有111個(gè);故共有816449362516941285個(gè) 有4種不同的作物可供選擇種植在如圖所示的4塊試驗(yàn)田中,每塊種植一種作物,相鄰的試驗(yàn)田(有公共邊)不能種植同一種作物,共有多少種不同的種植方法? A BC D 【錯(cuò)解】第一步,
15、種植A試驗(yàn)田有4種方法;第二步,種植B試驗(yàn)田有3種方法;第三步,種植C試驗(yàn)田有3種方法;第四步,種植D試驗(yàn)田有2種方法;由分步乘法計(jì)數(shù)原理知,共有N433272種種植方法 提示若按A,B,C,D的順序依次種植作物,會(huì)導(dǎo)致D試驗(yàn)田的種植數(shù)受C試驗(yàn)田的影響,情況復(fù)雜實(shí)際上種植C,D兩塊試驗(yàn)田再作為一步,用分類加法計(jì)數(shù)原理求解 【正解】方法一:第一步,第二步與錯(cuò)解相同第三步,若C試驗(yàn)田種植的作物與B試驗(yàn)田相同,則D試驗(yàn)田有3種方法,此時(shí)有133種種植方法若C試驗(yàn)田種植的作物與B試驗(yàn)田不同,則C試驗(yàn)田有2種種植方法,D也有2種種植方法,共有224種種植方法由分類加法計(jì)數(shù)原理知,有347種方法第四步,由分步乘法計(jì)數(shù)原理有N43784種不同的種植方法 方法二:(1)若A,D種植同種作物,則A,D有4種不同的種法,B有3種種植方法,C也有3種種植方法,由分步乘法計(jì)數(shù)原理,共有43336種種植方法(2)若A,D種植不同作物,則A有4種種植方法,D有3種種植方法,B有2種種植方法,C有2種種植方法,由分步乘法計(jì)數(shù)原理,共有432248種種植方法綜上所述,由分類加法計(jì)數(shù)原理,共有N364884種種植方法.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 設(shè)備采購常用的四種評(píng)標(biāo)方法
- 車間員工管理須知(應(yīng)知應(yīng)會(huì))
- 某公司設(shè)備維護(hù)保養(yǎng)工作規(guī)程
- 某企業(yè)潔凈車間人員進(jìn)出管理規(guī)程
- 企業(yè)管理制度之5S管理的八個(gè)口訣
- 標(biāo)準(zhǔn)化班前會(huì)的探索及意義
- 某企業(yè)內(nèi)審員考試試題含答案
- 某公司環(huán)境保護(hù)考核管理制度
- 現(xiàn)場管理的定義
- 員工培訓(xùn)程序
- 管理制度之生產(chǎn)廠長的職責(zé)與工作標(biāo)準(zhǔn)
- 某公司各級(jí)專業(yè)人員環(huán)保職責(zé)
- 企業(yè)管理制度:5S推進(jìn)與改善工具
- XXX公司環(huán)境風(fēng)險(xiǎn)排查及隱患整改制度
- 生產(chǎn)車間基層管理要點(diǎn)及建議