《高考數(shù)學(xué)二輪復(fù)習(xí) 考前增分指導(dǎo)一 技巧——巧解客觀題的10大妙招(二)填空題的解法課件 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)二輪復(fù)習(xí) 考前增分指導(dǎo)一 技巧——巧解客觀題的10大妙招(二)填空題的解法課件 理(32頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、(二)填空題的解法 填 空 題 是 高 考 試 題 的 第 二 題 型 .從 歷 年 的 高 考 成 績 以 及平 時(shí) 的 模 擬 考 試 可 以 看 出 , 填 空 題 得 分 率 一 直 不 是 很 高 .因?yàn)?填 空 題 的 結(jié) 果 必 須 是 數(shù) 值 準(zhǔn) 確 、 形 式 規(guī) 范 、 表 達(dá) 式 最 簡 ,稍 有 毛 病 , 便 是 零 分 .因 此 , 解 填 空 題 要 求 在 “ 快 速 、 準(zhǔn) 確 ”上 下 功 夫 , 由 于 填 空 題 不 需 要 寫 出 具 體 的 推 理 、 計(jì) 算 過 程 ,因 此 要 想 “ 快 速 ” 解 答 填 空 題 , 則 千 萬 不 可 “
2、小 題 大 做 ” ,而 要 達(dá) 到 “ 準(zhǔn) 確 ” , 則 必 須 合 理 靈 活 地 運(yùn) 用 恰 當(dāng) 的 方 法 , 在“ 巧 ” 字 上 下 功 夫 . 填 空 題 的 基 本 特 點(diǎn) 是 : (1)具 有 考 查 目 標(biāo) 集 中 、 跨 度 大 、 知識(shí) 覆 蓋 面 廣 、 形 式 靈 活 、 答 案 簡 短 、 明 確 、 具 體 , 不 需 要 寫 出求 解 過 程 而 只 需 要 寫 出 結(jié) 論 等 特 點(diǎn) ; (2)填 空 題 與 選 擇 題 有 質(zhì) 的區(qū) 別 : 填 空 題 沒 有 備 選 項(xiàng) , 因 此 , 解 答 時(shí) 不 受 誘 誤 干 擾 , 但同 時(shí) 也 缺 乏 提
3、示 ; 填 空 題 的 結(jié) 構(gòu) 往 往 是 在 正 確 的 命 題 或 斷 言中 , 抽 出 其 中 的 一 些 內(nèi) 容 留 下 空 位 , 讓 考 生 獨(dú) 立 填 上 , 考 查 方法 比 較 靈 活 ; (3)從 填 寫 內(nèi) 容 看 , 主 要 有 兩 類 : 一 類 是 定 量 填 寫型 , 要 求 考 生 填 寫 數(shù) 值 、 數(shù) 集 或 數(shù) 量 關(guān) 系 .由 于 填 空 題 缺 少 選 項(xiàng)的 信 息 , 所 以 高 考 題 中 多 數(shù) 是 以 定 量 型 問 題 出 現(xiàn) ; 另 一 類 是 定性 填 寫 型 , 要 求 填 寫 的 是 具 有 某 種 性 質(zhì) 的 對(duì) 象 或 填 寫 給
4、 定 的 數(shù)學(xué) 對(duì) 象 的 某 種 性 質(zhì) , 如 命 題 真 假 的 判 斷 等 . 方法一直接法對(duì) 于 計(jì) 算 型 的 試 題 , 多 通 過 直 接 計(jì) 算 求 得 結(jié) 果 , 這 是 解決 填 空 題 的 基 本 方 法 .它 是 直 接 從 題 設(shè) 出 發(fā) , 利 用 有 關(guān) 性 質(zhì) 或結(jié) 論 , 通 過 巧 妙 地 變 形 , 直 接 得 到 結(jié) 果 的 方 法 .要 善 于 透 過 現(xiàn)象 抓 本 質(zhì) , 有 意 識(shí) 地 采 取 靈 活 、 簡 捷 的 解 法 解 決 問 題 . 探究提高直接法是解決計(jì)算型填空題最常用的方法,在計(jì)算過程中,我們要根據(jù)題目的要求靈活處理,多角度思考問
5、題,注意一些解題規(guī)律和解題技巧的靈活應(yīng)用,將計(jì)算過程簡化從而得到結(jié)果,這是快速準(zhǔn)確地求解填空題的關(guān)鍵. (2)(2015湖南卷)在 一 次 馬 拉 松 比 賽 中 , 35名 運(yùn) 動(dòng) 員 的 成 績(單 位 : 分 鐘 )的 莖 葉 圖 如 圖 所 示若 將 運(yùn) 動(dòng) 員 按 成 績 由 好 到 差 編 為 1 35號(hào) , 再 用 系 統(tǒng) 抽 樣方 法 從 中 抽 取 7人 , 則 其 中 成 績 在 區(qū) 間 139, 151上 的 運(yùn) 動(dòng)員 人 數(shù) 是 _. 方法二特殊值法當(dāng) 填 空 題 已 知 條 件 中 含 有 某 些 不 確 定 的 量 , 但 填 空 題 的結(jié) 論 唯 一 或 題 設(shè)
6、條 件 中 提 供 的 信 息 暗 示 答 案 是 一 個(gè) 定 值 時(shí) , 可以 從 題 中 變 化 的 不 定 量 中 選 取 符 合 條 件 的 恰 當(dāng) 特 殊 值 (特 殊 函數(shù) 、 特 殊 角 、 特 殊 數(shù) 列 、 特 殊 位 置 、 特 殊 點(diǎn) 、 特 殊 方 程 、 特 殊模 型 等 )進(jìn) 行 處 理 , 從 而 得 出 探 求 的 結(jié) 論 . 探究提高求值或比較大小等問題的求解均可利用特殊值代入法,但要注意此種方法僅限于求解結(jié)論只有一種的填空題,對(duì)于開放性的問題或者有多種答案的填空題,則不能使用該種方法求解. 答案2 方法三圖象分析法對(duì) 于 一 些 含 有 幾 何 背 景 的
7、填 空 題 , 若 能 數(shù) 中 思 形 , 以 形 助數(shù) , 通 過 數(shù) 形 結(jié) 合 , 往 往 能 迅 速 作 出 判 斷 , 簡 捷 地 解 決 問 題 ,得 出 正 確 的 結(jié) 果 .韋 恩 圖 、 三 角 函 數(shù) 線 、 函 數(shù) 的 圖 象 及 方 程 的 曲線 等 , 都 是 常 用 的 圖 形 . 探究提高圖解法實(shí)質(zhì)上就是數(shù)形結(jié)合的思想方法在解決填空題中的應(yīng)用,利用圖形的直觀性并結(jié)合所學(xué)知識(shí)便可直接得到相應(yīng)的結(jié)論,這也是高考命題的熱點(diǎn).準(zhǔn)確運(yùn)用此類方法的關(guān)鍵是正確把握各種式子與幾何圖形中的變量之間的對(duì)應(yīng)關(guān)系,利用幾何圖形中的相關(guān)結(jié)論求出結(jié)果. 在同一直角坐標(biāo)系中,作出函數(shù)yf(x)
8、與函數(shù)yx的圖象,知它們有3個(gè)交點(diǎn),即函數(shù)g(x)有3個(gè)零點(diǎn).答案3 方法四構(gòu)造法構(gòu) 造 型 填 空 題 的 求 解 , 需 要 利 用 已 知 條 件 和 結(jié) 論 的 特殊 性 構(gòu) 造 出 新 的 數(shù) 學(xué) 模 型 , 從 而 簡 化 推 理 與 計(jì) 算 過 程 , 使較 復(fù) 雜 的 數(shù) 學(xué) 問 題 得 到 簡 捷 的 解 決 , 它 來 源 于 對(duì) 基 礎(chǔ) 知 識(shí)和 基 本 方 法 的 積 累 , 需 要 從 一 般 的 方 法 原 理 中 進(jìn) 行 提 煉 概括 , 積 極 聯(lián) 想 , 橫 向 類 比 , 從 曾 經(jīng) 遇 到 過 的 類 似 問 題 中 尋找 靈 感 , 構(gòu) 造 出 相 應(yīng)
9、的 函 數(shù) 、 概 率 、 幾 何 等 具 體 的 數(shù) 學(xué) 模型 , 使 問 題 快 速 解 決 . 探究提高構(gòu)造法實(shí)質(zhì)上是化歸與轉(zhuǎn)化思想在解題中的應(yīng)用,需要根據(jù)已知條件和所要解決的問題確定構(gòu)造的方向,通過構(gòu)造新的函數(shù)、不等式或數(shù)列等新的模型,從而轉(zhuǎn)化為自己熟悉的問題.本題巧妙地構(gòu)造出正方體,而球的直徑恰好為正方體的體對(duì)角線,問題很容易得到解決. 答案a b c 方法五綜合分析法對(duì) 于 開 放 性 的 填 空 題 , 應(yīng) 根 據(jù) 題 設(shè) 條 件 的 特 征 綜 合 運(yùn) 用所 學(xué) 知 識(shí) 進(jìn) 行 觀 察 、 分 析 , 從 而 得 出 正 確 的 結(jié) 論 . 【例5】 已 知 f(x)為 定 義
10、 在 R上 的 偶 函 數(shù) , 當(dāng) x 0時(shí) , 有 f(x 1) f(x), 且 當(dāng) x 0, 1)時(shí) , f(x) log2(x 1), 給 出 下 列 命 題 : f(2 013) f( 2 014)的 值 為 0; 函 數(shù) f(x)在 定 義 域 上 為 周 期是 2的 周 期 函 數(shù) ; 直 線 y x與 函 數(shù) f(x)的 圖 象 有 1個(gè) 交 點(diǎn) ; 函 數(shù) f(x)的 值 域 為 ( 1, 1).其 中 正 確 的 命 題 序 號(hào) 有 _.解析根據(jù)題意,可在同一坐標(biāo)系中畫出直線yx和函數(shù)f(x)的圖象如下: 根據(jù)圖象可知f(2 013)f(2 014)0正確,函數(shù)f(x)在定義
11、域上不是周期函數(shù),所以不正確,根據(jù)圖象確實(shí)只有一個(gè)交點(diǎn),所以正確,根據(jù)圖象,函數(shù)f(x)的值域是(1,1),正確.答案 探究提高對(duì)于規(guī)律總結(jié)類與綜合型的填空題,應(yīng)從題設(shè)條件出發(fā),通過逐步計(jì)算、分析總結(jié)探究其規(guī)律,對(duì)于多選型的問題更要注重分析推導(dǎo)的過程,以防多選或漏選.做好此類題目要深刻理解題意,捕捉題目中的隱含信息,通過聯(lián)想、歸納、概括、抽象等多種手段獲得結(jié)論. 【訓(xùn)練5】 給 出 以 下 命 題 : 根據(jù)驗(yàn)證可知得到一般性的等式是正確的.答案 1.解 填 空 題 的 一 般 方 法 是 直 接 法 , 除 此 以 外 , 對(duì) 于 帶 有 一 般 性命 題 的 填 空 題 可 采 用 特 例
12、法 , 和 圖 形 、 曲 線 等 有 關(guān) 的 命 題 可考 慮 數(shù) 形 結(jié) 合 法 .解 題 時(shí) , 常 常 需 要 幾 種 方 法 綜 合 使 用 , 才能 迅 速 得 到 正 確 的 結(jié) 果 .2.解 填 空 題 不 要 求 求 解 過 程 , 從 而 結(jié) 論 是 判 斷 是 否 正 確 的 唯 一標(biāo) 準(zhǔn) , 因 此 解 填 空 題 時(shí) 要 注 意 如 下 幾 個(gè) 方 面 :(1)要 認(rèn) 真 審 題 , 明 確 要 求 , 思 維 嚴(yán) 謹(jǐn) 、 周 密 , 計(jì) 算 有 據(jù) 、 準(zhǔn) 確 ;(2)要 盡 量 利 用 已 知 的 定 理 、 性 質(zhì) 及 已 有 的 結(jié) 論 ;(3)要 重 視 對(duì) 所 求 結(jié) 果 的 檢 驗(yàn) .