(統(tǒng)考版)高考數學二輪復習 專題限時集訓7 函數的概念、圖象與性質 基本初等函數、函數與方程 導數的簡單應用(含解析)(文)-人教版高三數學試題
《(統(tǒng)考版)高考數學二輪復習 專題限時集訓7 函數的概念、圖象與性質 基本初等函數、函數與方程 導數的簡單應用(含解析)(文)-人教版高三數學試題》由會員分享,可在線閱讀,更多相關《(統(tǒng)考版)高考數學二輪復習 專題限時集訓7 函數的概念、圖象與性質 基本初等函數、函數與方程 導數的簡單應用(含解析)(文)-人教版高三數學試題(28頁珍藏版)》請在裝配圖網上搜索。
1、專題限時集訓(七) 函數的概念、圖象與性質 基本初等函數、函數與方程 導數的簡單應用 1.(2019·全國卷Ⅱ)設f(x)為奇函數,且當x≥0時,f(x)=ex-1,則當x<0時,f(x)=( ) A.e-x-1 B.e-x+1 C.-e-x-1 D.-e-x+1 D [由題意知f(x)是奇函數,且當x≥0時,f(x)=ex-1,則當x<0時,-x>0, 則f(-x)=e-x-1=-f(x),得f(x)=-e-x+1. 故選D.] 2.(2017·全國卷Ⅱ)函數f(x)=ln(x2-2x-8)的單調遞增區(qū)間是( ) A.(-∞,-2) B.(-∞,1) C
2、.(1,+∞) D.(4,+∞) D [由x2-2x-8>0,得x>4或x<-2. 設t=x2-2x-8,則y=ln t為增函數. 要求函數f(x)的單調遞增區(qū)間,即求函數t=x2-2x-8的符合f(x)的單調遞增區(qū)間. ∵函數t=x2-2x-8在區(qū)間(4,+∞)上單調遞增, ∴函數f(x)的單調遞增區(qū)間為(4,+∞). 故選D.] 3.(2019·全國卷Ⅲ)函數f(x)=2sin x-sin 2x在[0,2π]的零點個數為( ) A.2 B.3 C.4 D.5 B [令f(x)=0,得2sin x-sin 2x=0, 即2sin x-2sin xcos x=0
3、, ∴2sin x(1-cos x)=0,∴sin x=0或cos x=1. 又x∈[0,2π],∴由sin x=0得x=0,π或2π,由cos x=1得x=0或2π. 故函數f(x)的零點為0,π,2π,共3個. 故選B.] 4.(2019·全國卷Ⅰ)函數f(x)=在[-π,π]的圖象大致為( ) A B C D D [因為f(-x)==-=-f(x),所以f(x)為奇函數,排除選項A. 令x=π,則f(π)==>0,排除選項B,C.故選D.] 5.(2018·全國卷Ⅰ)設函數f(x)=x3+(a-1)x2+ax.若f(x)為
4、奇函數,則曲線y=f(x)在點(0,0)處的切線方程為( ) A.y=-2x B.y=-x C.y=2x D.y=x D [因為f(x)為奇函數,所以f(-x)=-f(x),由此可得a=1,故f(x)=x3+x,f′(x)=3x2+1,f′(0)=1,所以曲線y=f(x)在點(0,0)處的切線方程為y=x.] 6.(2015·全國卷Ⅰ)已知函數f(x)=且f(a)=-3,則f(6-a)=( ) A.- B.- C.- D.- A [由于f(a)=-3, ①若a≤1,則2a-1-2=-3, 整理得2a-1=-1. 由于2x>0,所以2a-1=-1無解; ②若
5、a>1,則-log2(a+1)=-3, 解得a+1=8,a=7, 所以f(6-a)=f(-1)=2-1-1-2=-. 綜上所述,f(6-a)=-.故選A.] 7.(2016·全國卷Ⅰ)若函數f(x)=x-sin 2x+asin x在(-∞,+∞)單調遞增,則a的取值范圍是( ) A.[-1,1] B. C. D. C [f′(x)=1-cos 2x+acos x=1-×(2cos2x-1)+acos x=-cos2x+acos x+,f(x)在R上單調遞增,則f′(x)≥0在R上恒成立,令cos x=t,t∈[-1,1],則-t2+at+≥0在[-1,1]上恒成立,即4
6、t2-3at-5≤0在[-1,1]上恒成立,令g(t)=4t2-3at-5,則解得-≤a≤,故選C.] 8.(2019·全國卷Ⅲ)設f(x)是定義域為R的偶函數,且在(0,+∞)單調遞減,則( ) C [因為f(x)是定義域為R的偶函數, 所以f=f(-log34)=f(log34). 又因為log34>1>2>2>0,且函數f(x)在(0,+∞)上單調遞減,所以 故選C.] 9.(2016·全國卷Ⅱ)已知函數f(x)(x∈R)滿足f(x)=f(2-x),若函數y=|x2-2x-3|與y=f(x)圖象的交點為(x1,y1),(x2,y2),…,(xm,ym),則xi=( )
7、 A.0 B.m C.2m D.4m B [∵f(x)=f(2-x),∴函數f(x)的圖象關于直線x=1對稱. 又y=|x2-2x-3|=|(x-1)2-4|的圖象關于直線x=1對稱,∴兩函數圖象的交點關于直線x=1對稱. 當m為偶數時,i=2×=m; 當m為奇數時,i=2×+1=m. 故選B.] 10.(2017·全國卷Ⅲ)已知函數f(x)=x2-2x+a(ex-1+e-x+1)有唯一零點,則a=( ) A.- B. C. D.1 C [法一:(換元法)f(x)=x2-2x+a(ex-1+e-x+1)=(x-1)2+a[ex-1+e-(x-1)]-1, 令t
8、=x-1,則g(t)=f(t+1)=t2+a(et+e-t)-1. ∵g(-t)=(-t)2+a(e-t+et)-1=g(t), ∴函數g(t)為偶函數. ∵f(x)有唯一零點,∴g(t)也有唯一零點. 又g(t)為偶函數,由偶函數的性質知g(0)=0, ∴2a-1=0,解得a=. 故選C. 法二:(等價轉化法)f(x)=0?a(ex-1+e-x+1)=-x2+2x. ex-1+e-x+1≥2=2, 當且僅當x=1時取“=”. -x2+2x=-(x-1)2+1≤1,當且僅當x=1時取“=”. 若a>0, 則a(ex-1+e-x+1)≥2a, 要使f(x)有唯一零點,則
9、必有2a=1,即a=.
若a≤0,則f(x)的零點不唯一.
故選C.]
11.(2019·全國卷Ⅰ)曲線y=3(x2+x)ex在點(0,0)處的切線方程為________.
y=3x [y′=3(2x+1)ex+3(x2+x)ex=ex(3x2+9x+3),∴斜率k=e0×3=3,∴切線方程為y=3x.]
12.(2017·全國卷Ⅲ)設函數f(x)=則滿足f(x)+f>1的x的取值范圍是________.
[由題意知,可對不等式分x≤0,0
10、然成立. 當x>時,原不等式為2x+2x->1,顯然成立. 綜上可知,x>-.] 1.(2020·鄭州二模)設函數y=的定義域為A,函數y=ln(3-x)的定義域為B,則A∩B=( ) A.(-∞,3) B.(-8,-3) C.{3} D.[-3,3) D [由9-x2≥0,得-3≤x≤3,∴A=[-3,3],由3-x>0,得x<3,∴B=(-∞,3), ∴A∩B=[-3,3).故選D.] 2.(2020·福州一模)函數f(x)=3x+x3-5的零點所在的區(qū)間為( ) A.(0,1) B. C. D. B [依題意,f(x)為增函數,f(1)=3+
11、1-5<0,f(2)=32+23-5>0, f=3+-5=3->0,所以f(x)的零點所在的區(qū)間為,故選B.] 3.(2020·洛陽二模)已知a=(),b=9,c=3,則( ) A.a
12、x-2e+ C [∵f(x)為奇函數,當x<0時,f(x)=e-x-ex2,∴當x>0時,f(x)=-ex+ex2,∴此時f′(x)=-ex+2ex,∴f(x)在x=1處的切線斜率k=f′(1)=e,又f(1)=0, ∴f(x)在x=1處的切線方程為y=ex-e.故選C.] 5.(2020·天水模擬)設函數f(x)=+ln x,則( ) A.x=為f(x)的極大值點 B.x=為f(x)的極小值點 C.x=2為f(x)的極大值點 D.x=2為f(x)的極小值點 D [因為f(x)=+ln x,所以f′(x)=-=, 當0<x<2時,f′(x)<0,當x>2時,f′(x)>0,
13、 所以函數f(x)在(0,2)為減函數,在(2,+∞)為增函數, 即x=2為函數f(x)的極小值點,故選D.] 6.(2020·遵義模擬)若函數f(x)=x3-mx2+2x(m∈R)在x=1處有極值,則f(x)在區(qū)間[0,2]上的最大值為( ) A. B.2 C.1 D.3 B [由已知得f′(x)=3x2-2mx+2,∴f′(1)=3-2m+2=0,∴m=,經檢驗滿足題意. ∴f(x)=x3-x2+2x,f′(x)=3x2-5x+2. 由f′(x)<0得<x<1;由f′(x)>0得x<或x>1. 所以函數f(x)在上遞增,在上遞減,在[1,2]上遞增. 則f(x
14、)極大值=f=,f(2)=2, 由于f(2)>f(x)極大值,所以f(x)在區(qū)間[0,2]上的最大值為2,故選B.] 7.(2020·新鄉(xiāng)模擬)下列函數中,既是偶函數又有零點的是( ) A.y=x2+1 B.y=ex+e-x C.y=cos D.y=cos(π+x) D [y=1+x2顯然沒有零點,不符合題意; 由于y=ex+e-x>0恒成立,顯然沒有零點,不符合題意;y=cos=sin x為奇函數,不符合題意;y=cos(x+π)=-cos x為偶函數,且當x=kπ+時,y=0,有零點,故選D.] 8.(2020·銀川模擬)若函數f(x)=-cosx+ax為增函數,則
15、實數a的取值范圍為( ) A.[-1,+∞) B.[1,+∞) C.(-1,+∞) D.(1,+∞) B [由題意可得,f′(x)=sin x+a≥0恒成立, 故a≥-sin x恒成立,因為-1≤-sin x≤1,所以a≥1.故選B.] 9.(2020·金華模擬)已知函數f(x)= ,則下列結論中錯誤的是( ) A.f(-2)=4 B.若f(m)=9,則m=±3 C.f(x)是奇函數 D.f(x)在R上單調函數 B [∵f(x)=, ∴f(-2)=4,故A正確; 若f(m)=9,則m2=9,則m=-3,故B錯誤; 由f(x)=可得f(-x)=, ∴
16、-f(x)==f(-x),故C正確; 結合分段函數的性質及二次函數的性質可知f(x)在R上單調遞減,故D正確.故選B.] 10.(2020·福建二模)若函數f(x)=(sinx)ln(+x)是偶函數,則實數a=( ) A.-1 B.0 C.1 D. C [根據題意,函數f(x)=(sin x)ln(+x)且f(x)為偶函數, 則f(-x)=f(x),即sin(-x)ln(-x)=sin x·ln(+x), 變形可得ln a=0,則a=1,故選C.] 11.(2020·西安模擬)函數f(x)=(x2-2|x|)e|x|的圖象大致為( ) A B
17、 C D B [根據題意,f(x)=(x2-2|x|)e|x|,則有f(-x)=(x2-2|x|)e|x|=f(x),即函數f(x)為偶函數,排除C,又由f(1)=(1-2)e=-e,排除AD,故選B.] 12.(2020·昆明模擬)設函數f(x)=,若f(0)是函數f(x)的最小值,則實數a的取值范圍是( ) A.[-1,2] B.[-1,0] C.[1,2] D.[0,2] D [當a<0時,函數f(x)的最小值為f(a),不滿足題意; 當a≥0時,要使f(0)是函數f(x)的最小值,只須min≥a2+2, 即4+a≥a2+2,解得-1≤a≤2,∴0≤a
18、≤2. 綜上知,實數a的取值范圍是[0,2],故選D.] 13.(2020·濟南模擬)若函數f(x)=e|x|-mx2有且只有4個不同的零點.則實數m的取值范圍是( ) A. B. C. D. B [f(x)有且只有4個不同的零點等價于偶函數y=e|x|與偶函數y=mx2的圖象有且只有4個不同的交點,即ex=mx2有兩個不同的正根, 令h(x)=,則h′(x)=,x∈(0,2)時,h′(x)<0,x∈(2,+∞)時,h′(x)>0, ∴函數h(x)在(0,2)上單調遞減,在(2,+∞)上單調遞增,此時h(x)min=h(2)=; 又∵當x→0時,h(x)→+∞,當x→
19、+∞時,h(x)→+∞,∴m>,故選B.] 14.(2020·濟南模擬)1943年,我國病毒學家黃禎祥在美國發(fā)表了對病毒學研究有重大影響的論文“西方馬腦炎病毒在組織培養(yǎng)上滴定和中和作用的進一步研究”,這一研究成果,使病毒在試管內繁殖成為現實,從此擺脫了人工繁殖病毒靠動物、雞胚培養(yǎng)的原始落后的方法.若試管內某種病毒細胞的總數y和天數t的函數關系為:y=2t-1,且該種病毒細胞的個數超過108時會發(fā)生變異,則該種病毒細胞實驗最多進行的天數為( ) (lg 2≈0.3010) A.25天 B.26天 C.27天 D.28天 C [∵y=2t-1,∴2t-1>108, 兩邊同時取常用
20、對數得:lg 2t-1>lg 108, ∴(t-1)lg 2>8,∴t-1>,∴t>+1≈27.6, ∴該種病毒細胞實驗最多進行的天數為27天,故選C.] 15.(2020·常德模擬)設函數f(x)=e|x-1|-,則不等式f(x)>f(2x+1)的解集為( ) A.(-1,0) B.(-∞,-1) C. D.(-1,0)∪ D [根據題意,函數f(x)=e|x-1|-, 設g(x)=e|x|-,其定義域為{x|x≠1}, 又由g(-x)=e|x|-=g(x),即函數g(x)為偶函數, 當x∈(0,+∞)時,g(x)=ex-,有g′(x)=ex+,為增函數,
21、g(x)的圖象向右平移1個單位得到f(x)的圖象,所以函數f(x)關于x=1對稱,在(-∞,1)上單調遞減,在(1,+∞)上單調遞增. 由f(x)>f(2x+1),可得, 解得-1<x<且x≠0, 即x的取值范圍為(-1,0)∪,故選D.] 16.(2020·道里區(qū)校級模擬)已知函數f(x)=,若函數F(x)=f(x)-mx有4個零點,則實數m的取值范圍是( ) A. B. C. D. B [依題意,函數y=f(x)的圖象與直線y=mx有4個交點, 當x∈[2,4)時,x-2∈[0,2),則f(x-2)=-(x-3)2+1,故此時f(x)=-(x-3)2+,取得最大值
22、時對應的點為A;當x∈[4,6)時,x-2∈[2,4),則f(x-2)=-(x-5)2+,故此時f(x)=-(x-5)2+,取得最大值時對應的點為B;作函數圖象如下: 由圖象可知,直線OA與函數f(x)有兩個交點,且kOA=;直線OB與函數f(x)有兩個交點,且kOB=;又過點(0,0)作函數在[2,4)上的切線切于點C,作函數在[4,6)上的切線切于點D,則kOC=3-2,kOD=-. 由圖象可知,滿足條件的實數m的取值范圍為.故選B] 17.(2020·福建二模)已知f′(x)是定義在R上的函數f(x)的導函數,且f(1+x)=f(1-x)e2x,當x>1時,f′(x)>f(x)
23、恒成立,則下列判斷正確的是( )
A.e5f(-2)>f(3) B.f(-2)>e5f(3)
C.e5f(2)
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。