(課標(biāo)專用 5年高考3年模擬A版)高考數(shù)學(xué) 第八章 立體幾何 3 直線、平面平行的判定與性質(zhì)試題 文-人教版高三數(shù)學(xué)試題
《(課標(biāo)專用 5年高考3年模擬A版)高考數(shù)學(xué) 第八章 立體幾何 3 直線、平面平行的判定與性質(zhì)試題 文-人教版高三數(shù)學(xué)試題》由會(huì)員分享,可在線閱讀,更多相關(guān)《(課標(biāo)專用 5年高考3年模擬A版)高考數(shù)學(xué) 第八章 立體幾何 3 直線、平面平行的判定與性質(zhì)試題 文-人教版高三數(shù)學(xué)試題(29頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、直線、平面平行的判定與性質(zhì) 挖命題 【考情探究】 考點(diǎn) 內(nèi)容解讀 5年考情 預(yù)測(cè)熱度 考題示例 考向 關(guān)聯(lián)考點(diǎn) 直線、平面平行的判定與性質(zhì) ①了解直線與平面、平面與平面間的位置關(guān)系;②認(rèn)識(shí)和理解空間中直線、平面平行的有關(guān)性質(zhì)和判定;③能運(yùn)用公理、定理和已獲得的結(jié)論證明一些空間位置關(guān)系的簡(jiǎn)單命題 2017課標(biāo)全國(guó)Ⅰ,6,5分 線面平行的判定 — ★★★ 2016課標(biāo)全國(guó)Ⅲ,19,12分 線面平行的判定,三棱錐的體積 線線平行的判定,體積公式 2016四川,17,12分 線面平行與面面垂直的判定 探索性問(wèn)題的求解 分析解讀 從近幾年的高考試
2、題來(lái)看,高考對(duì)本節(jié)內(nèi)容的考查比較平穩(wěn),一般通過(guò)對(duì)圖形或幾何體的認(rèn)識(shí),考查直線與平面平行以及平面與平面平行的判定和性質(zhì),題型以解答題為主,偶爾也會(huì)出現(xiàn)在小題之中,以命題判斷居多,難度適中,主要考查直線、平面平行間的轉(zhuǎn)化思想,同時(shí)也考查學(xué)生的空間想象能力以及邏輯推理能力,分值約為6分. 破考點(diǎn) 【考點(diǎn)集訓(xùn)】 考點(diǎn) 直線、平面平行的判定與性質(zhì) 1.已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,下列說(shuō)法中正確的是( ) A.若m?α,n?β,m∥n,則α∥β B.若m?α,n?β,α∥β,則m∥n C.若m?α,n?β,α∥β,且m,n共面,則m∥n D.若m∥n,m∥α,n∥
3、β,則α∥β 答案 C 2.(2019屆河南豫北六校11月聯(lián)考,5)如圖,在四棱錐P-ABCD中,M,N分別為AC,PC上的兩點(diǎn),且MN∥平面PAD,則( ) A.MN∥PD B.MN∥PA C.MN∥AD D.以上均有可能 答案 B 3.如圖所示,平面四邊形ABCD所在的平面與平面α平行,且四邊形ABCD在平面α內(nèi)的平行投影A1B1C1D1是一個(gè)平行四邊形,則四邊形ABCD的形狀一定是 .? 答案 平行四邊形 4.(2019屆山西太原五中期中考試,14)在棱長(zhǎng)為a的正
4、方體ABCD-A1B1C1D1中,M,N分別是棱A1B1,B1C1的中點(diǎn),P是棱AD上的一點(diǎn),AP=a3,過(guò)P,M,N的平面與棱CD交于點(diǎn)Q,則PQ= .? 答案 223a 5.如圖,四邊形ABCD是平行四邊形,點(diǎn)P是平面ABCD外的一點(diǎn),M是PC的中點(diǎn),在DM上取一點(diǎn)G,過(guò)G和AP作平面交平面BDM于GH,求證:AP∥GH. 證明 如圖,連接AC,設(shè)AC交BD于O,連接MO. ∵四邊形ABCD是平行四邊形, ∴O是AC的中點(diǎn). 又M是PC的中點(diǎn), ∴MO∥PA. 又MO?平面BDM,PA?平面BDM, ∴PA∥平面BDM. 又經(jīng)過(guò)PA與點(diǎn)G的平面交平面B
5、DM于GH, ∴AP∥GH. 6.(2019屆河北邯鄲10月調(diào)研,18)如圖,在四棱錐S-ABCD中,側(cè)棱SA⊥底面ABCD,底面ABCD是直角梯形,AD∥BC,AB⊥AD,且SA=AB=BC=2,AD=1,M是棱SB的中點(diǎn). (1)求證:AM∥平面SCD; (2)求三棱錐B-MAC的體積. 解析 (1)證明:取SC的中點(diǎn)N,連接MN,ND. ∵M(jìn),N分別是SB,SC的中點(diǎn),∴MN∥BC,且MN=12BC. ∵AD∥BC,且AD=12BC,∴MN∥AD且MN=AD. ∴四邊形AMND為平行四邊形,∴AM∥ND. 又AM?平面SCD,ND?平面SCD. ∴AM∥平面SCD
6、. (2)∵SA⊥底面ABCD,∴SA⊥BC,又BC⊥AB,SA∩AB=A, ∴BC⊥平面SAB, ∴VB-MAC=VC-MAB=13·S△MAB·BC=13×12×(2)2×2=23. 7.(2017河北衡水中學(xué)期中,18)如圖,已知在四棱錐P-ABCD中,底面ABCD是等腰梯形,AB∥CD,點(diǎn)O是線段AB的中點(diǎn),PO⊥平面ABCD,PO=CD=DA=12AB=4,M是線段PA的中點(diǎn). (1)證明:平面PBC∥平面ODM; (2)求點(diǎn)A到平面PCD的距離. 解析 (1)證明:由題意,得CD∥BO,且CD=BO, ∴四邊形OBCD為平行四邊形,∴BC∥OD. ∵BC?平面
7、PBC,OD?平面PBC, ∴OD∥平面PBC. 又∵AO=OB,AM=MP,∴OM∥PB. 又OM?平面PBC,PB?平面PBC, ∴OM∥平面PBC. 又OM∩OD=O, ∴平面PBC∥平面ODM. (2)取CD的中點(diǎn)N,連接ON,PN,如圖所示,則ON⊥CD. ∵PO⊥平面ABCD,CD?平面ABCD,∴PO⊥CD. 又∵ON⊥CD,PO∩ON=O,∴CD⊥平面PNO. ∵PN?平面PNO,∴CD⊥PN. ∴ON,PN分別為△ACD,△PCD的公共邊CD上的高. 由題意可求得ON=23,則PN=27, 設(shè)點(diǎn)A到平面PCD的距離為d. ∵V三棱錐A-PCD=
8、V三棱錐P-ACD, 即13×12×4×27×d=13×12×4×23×4, ∴d=4217.即點(diǎn)A到平面PCD的距離為4217. 煉技法 【方法集訓(xùn)】 方法1 證明線面平行的方法 1.(2019屆湖北重點(diǎn)中學(xué)9月調(diào)研,19)如圖,在四棱錐S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB=2,點(diǎn)M是SD的中點(diǎn),AN⊥SC,且交SC于點(diǎn)N. (1)求證:SB∥平面ACM; (2)求點(diǎn)C到平面AMN的距離. 解析 (1)證明:連接BD交AC于E,連接ME. ∵四邊形ABCD是正方形,∴E是BD的中點(diǎn). 又∵M(jìn)是SD的中點(diǎn),∴ME是△DSB的中位線.
9、∴ME∥SB. 又∵M(jìn)E?平面ACM,SB?平面ACM,∴SB∥平面ACM. (2)由題意知DC⊥SA,DC⊥DA,又SA∩DA=A,∴DC⊥平面SAD,又AM?平面SAD,∴AM⊥DC. ∵SA=AD,M是SD的中點(diǎn),∴AM⊥SD. 又DC∩SD=D, ∴AM⊥平面SDC,又SC?平面SDC,∴SC⊥AM. ∵SC⊥AN,AM∩AN=A,∴SC⊥平面AMN. 于是CN⊥平面AMN,則CN的長(zhǎng)為點(diǎn)C到平面AMN的距離. 在Rt△SAC中,SA=2,AC=22,∴SC=SA2+AC2=23, 由AC2=CN·SC?CN=433, ∴點(diǎn)C到平面AMN的距離為433. 2.(2
10、018江西南昌二中月考,19)在直三棱柱ABC-A'B'C'中,∠BAC=90°,AB=AC=2,AA'=1,點(diǎn)M,N分別為A'B和B'C'的中點(diǎn). (1)證明:MN∥平面A'ACC'; (2)求三棱錐A'-MNC的體積. 解析 (1)證法一:連接AB',AC', 因?yàn)槿庵鵄BC-A'B'C'為直三棱柱, 所以M為AB'的中點(diǎn).又因?yàn)镹為B'C'的中點(diǎn), 所以MN∥AC', 又MN?平面A'ACC',AC'?平面A'ACC', 所以MN∥平面A'ACC'. 證法二:取A'B'的中點(diǎn)P,連接MP,NP. 因?yàn)镸,N分別為A'B和B'C'的中點(diǎn), 所以MP∥BB',NP
11、∥A'C',易知AA'∥BB',所以MP∥AA'. 因?yàn)镸P?平面A'ACC',AA'?平面A'ACC', 所以MP∥平面A'ACC',同理,NP∥平面A'ACC'. 又MP∩NP=P,因此平面MPN∥平面A'ACC'. 而MN?平面MPN,因此MN∥平面A'ACC'. (2)解法一:連接BN,由題意知A'N⊥B'C',因?yàn)槠矫鍭'B'C'∩平面B'BCC'=B'C',平面A'B'C'⊥平面B'BCC', 所以A'N⊥平面NBC.又A'N=12B'C'=1, 故VA'-MNC=VN-A'MC=12VN-A'BC=12VA'-NBC=16. 解法二:連接BN.VA'-MNC=VA
12、'-NBC-VM-NBC=12VA'-NBC=16. 方法2 證明面面平行的方法 1.(2018吉林長(zhǎng)春質(zhì)量監(jiān)測(cè),19)如圖,在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.設(shè)M,N分別為PD,AD的中點(diǎn). (1)求證:平面CMN∥平面PAB; (2)求三棱錐P-ABM的體積. 解析 (1)證明:∵M(jìn),N分別為PD,AD的中點(diǎn), ∴MN∥PA,又MN?平面PAB,PA?平面PAB, ∴MN∥平面PAB. 在Rt△ACD中,∠CAD=60°,易知CN=AN,∴∠ACN=60°. 又∠BAC=60°,
13、∴CN∥AB. ∵CN?平面PAB,AB?平面PAB,∴CN∥平面PAB. 又CN∩MN=N,∴平面CMN∥平面PAB. (2)由(1)知,平面CMN∥平面PAB, ∴點(diǎn)M到平面PAB的距離等于點(diǎn)C到平面PAB的距離, ∵∠ABC=90°,∴CB⊥AB. ∵PA⊥平面ABCD, ∴PA⊥BC, ∴BC⊥平面PAB. ∵AB=1,∠ABC=90°,∠BAC=60°,∴BC=3, ∴三棱錐P-ABM的體積V=VM-PAB=VC-PAB=13×12×1×2×3=33. 2.(2018安徽合肥一中模擬,18)如圖,四邊形ABCD與ADEF均為平行四邊形,M,N,G分別是AB,AD
14、,EF的中點(diǎn). (1)求證:BE∥平面DMF; (2)求證:平面BDE∥平面MNG. 證明 (1)連接AE,則AE必過(guò)DF與GN的交點(diǎn)O,連接MO,因?yàn)樗倪呅蜛DEF為平行四邊形,所以O(shè)為AE中點(diǎn),又M為AB中點(diǎn),所以MO為△ABE的中位線,所以BE∥MO, 又BE?平面DMF,MO?平面DMF, 所以BE∥平面DMF. (2)因?yàn)镹,G分別為平行四邊形ADEF的對(duì)邊AD,EF的中點(diǎn),所以DE∥GN, 又DE?平面MNG,GN?平面MNG, 所以DE∥平面MNG. 又M為AB的中點(diǎn),N為AD的中點(diǎn), 所以MN為△ABD的中位線, 所以BD∥MN, 因?yàn)锽D?平面
15、MNG,MN?平面MNG, 所以BD∥平面MNG, 因?yàn)镈E與BD為平面BDE內(nèi)的兩條相交直線, 所以平面BDE∥平面MNG. 過(guò)專題 【五年高考】 A組 統(tǒng)一命題·課標(biāo)卷題組 考點(diǎn) 直線、平面平行的判定與性質(zhì) 1.(2017課標(biāo)全國(guó)Ⅰ,6,5分)如圖,在下列四個(gè)正方體中,A,B為正方體的兩個(gè)頂點(diǎn),M,N,Q為所在棱的中點(diǎn),則在這四個(gè)正方體中,直線AB與平面MNQ不平行的是( ) 答案 A 2.(2016課標(biāo)全國(guó)Ⅲ,19,12分)如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N
16、為PC的中點(diǎn). (1)證明MN∥平面PAB; (2)求四面體NBCM的體積. 解析 (1)證明:由已知得AM=23AD=2, 取BP的中點(diǎn)T,連接AT,TN,由N為PC的中點(diǎn)知TN∥BC,TN=12BC=2.(3分) 又AD∥BC,故TNAM,故四邊形AMNT為平行四邊形,于是MN∥AT. 因?yàn)锳T?平面PAB,MN?平面PAB,所以MN∥平面PAB.(6分) (2)因?yàn)镻A⊥平面ABCD,N為PC的中點(diǎn),所以N到平面ABCD的距離為12PA.(9分) 取BC的中點(diǎn)E,連接AE. 由AB=AC=3得AE⊥BC,AE=AB2-BE2=5. 由AM∥
17、BC得M到BC的距離為5, 故S△BCM=12×4×5=25. 所以四面體NBCM的體積VNBCM=13·S△BCM·PA2=453.(12分) 3.(2014課標(biāo)Ⅱ,18,12分)如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn). (1)證明:PB∥平面AEC; (2)設(shè)AP=1,AD=3,三棱錐P-ABD的體積V=34,求A到平面PBC的距離. 解析 (1)證明:設(shè)BD與AC的交點(diǎn)為O,連接EO. 因?yàn)锳BCD為矩形, 所以O(shè)為BD的中點(diǎn). 又E為PD的中點(diǎn), 所以EO∥PB. EO?平面AEC,PB?平面AEC, 所以
18、PB∥平面AEC. (2)V=16PA·AB·AD=36AB. 又V=34, 所以AB=32, 所以PB=AB2+PA2=132. 作AH⊥PB交PB于H. 由題設(shè)知BC⊥平面PAB, 因?yàn)锳H?平面PAB, 所以BC⊥AH, 又BC∩BP=B, 故AH⊥平面PBC. 又AH=PA·ABPB=31313, 所以A到平面PBC的距離為31313. B組 自主命題·省(區(qū)、市)卷題組 考點(diǎn) 直線、平面平行的判定與性質(zhì) 1.(2017浙江,19,15分)如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=
19、2DC=2CB,E為PD的中點(diǎn). (1)證明:CE∥平面PAB; (2)求直線CE與平面PBC所成角的正弦值. 解析 (1)證明:如圖,設(shè)PA中點(diǎn)為F,連接EF,FB.因?yàn)镋,F分別為PD,PA中點(diǎn),所以EF∥AD且EF=12AD. 又因?yàn)锽C∥AD,BC=12AD,所以EF∥BC且EF=BC, 即四邊形BCEF為平行四邊形,所以CE∥BF, 因?yàn)镃E?平面PAB,BF?平面PAB, 因此CE∥平面PAB. (2)分別取BC,AD的中點(diǎn)M,N. 連接PN交EF于點(diǎn)Q,連接MQ. 因?yàn)镋,F,N分別是PD,PA,AD的中點(diǎn),所以Q為EF的中點(diǎn), 在平行四邊形BCEF
20、中,MQ∥CE. 由△PAD為等腰直角三角形得PN⊥AD. 由DC⊥AD,N是AD的中點(diǎn)得BN⊥AD. 因?yàn)镻N∩BN=N, 所以AD⊥平面PBN, 由BC∥AD得BC⊥平面PBN, 因?yàn)锽C?平面PBC, 所以平面PBC⊥平面PBN. 過(guò)點(diǎn)Q作PB的垂線,垂足為H,連接MH. MH是MQ在平面PBC上的射影,所以∠QMH是直線CE與平面PBC所成的角.設(shè)CD=1. 在△PCD中,由PC=2,CD=1,PD=2得CE=2, 在△PBN中,由PN=BN=1,PB=3得QH=14, 在Rt△MQH中,QH=14,MQ=2, 所以sin∠QMH=28. 所以,直線CE與平
21、面PBC所成角的正弦值是28. 2.(2016四川,17,12分)如圖,在四棱錐P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=12AD. (1)在平面PAD內(nèi)找一點(diǎn)M,使得直線CM∥平面PAB,并說(shuō)明理由; (2)證明:平面PAB⊥平面PBD. 解析 (1)取棱AD的中點(diǎn)M(M∈平面PAD),點(diǎn)M即為所求的一個(gè)點(diǎn).理由如下: 連接CM.因?yàn)锳D∥BC,BC=12AD, 所以BC∥AM,且BC=AM. 所以四邊形AMCB是平行四邊形,從而CM∥AB. 又AB?平面PAB,CM?平面PAB, 所以CM∥平面PAB. (說(shuō)明:取棱PD的中
22、點(diǎn)N,則所找的點(diǎn)可以是直線MN上任意一點(diǎn)) (2)證明:連接BM,由已知,PA⊥AB,PA⊥CD, 因?yàn)锳D∥BC,BC=12AD,所以直線AB與CD相交, 所以PA⊥平面ABCD. 因?yàn)锽D?平面ABCD,所以PA⊥BD. 因?yàn)锳D∥BC,BC=12AD, 所以BC∥MD,且BC=MD. 所以四邊形BCDM是平行四邊形. 又BC=CD,所以四邊形BCDM為菱形, 所以MC⊥BD, 由(1)知MC∥AB, 所以BD⊥AB. 又AB∩AP=A,所以BD⊥平面PAB. 又BD?平面PBD, 所以平面PAB⊥平面PBD. 3.(2015山東,18,12分)如圖,
23、三棱臺(tái)DEF-ABC中,AB=2DE,G,H分別為AC,BC的中點(diǎn). (1)求證:BD∥平面FGH; (2)若CF⊥BC,AB⊥BC,求證:平面BCD⊥平面EGH. 證明 (1)證法一:連接DG,CD,設(shè)CD∩GF=M,連接MH. 在三棱臺(tái)DEF-ABC中, AB=2DE,G為AC的中點(diǎn), 可得DF∥GC,DF=GC, 所以四邊形DFCG為平行四邊形. 則M為CD的中點(diǎn),又H為BC的中點(diǎn), 所以HM∥BD, 又HM?平面FGH,BD?平面FGH, 所以BD∥平面FGH. 證法二:在三棱臺(tái)DEF-ABC中, 由BC=2EF,H為BC的中點(diǎn), 可得BH∥EF,B
24、H=EF, 所以四邊形HBEF為平行四邊形, 可得BE∥HF. 在△ABC中,G為AC的中點(diǎn),H為BC的中點(diǎn), 所以GH∥AB. 又GH∩HF=H,AB∩BE=B, 所以平面FGH∥平面ABED. 因?yàn)锽D?平面ABED, 所以BD∥平面FGH. (2)連接HE. 因?yàn)镚,H分別為AC,BC的中點(diǎn), 所以GH∥AB. 由AB⊥BC,得GH⊥BC. 又H為BC的中點(diǎn), 所以EF∥HC,EF=HC, 因此四邊形EFCH是平行四邊形. 所以CF∥HE, 又CF⊥BC,所以HE⊥BC. 又HE,GH?平面EGH,HE∩GH=H, 所以BC⊥平面EGH. 又B
25、C?平面BCD, 所以平面BCD⊥平面EGH. 4.(2014安徽,19,13分)如圖,四棱錐P-ABCD的底面是邊長(zhǎng)為8的正方形,四條側(cè)棱長(zhǎng)均為217,點(diǎn)G,E,F,H分別是棱PB,AB,CD,PC上共面的四點(diǎn),平面GEFH⊥平面ABCD,BC∥平面GEFH. (1)證明:GH∥EF; (2)若EB=2,求四邊形GEFH的面積. 解析 (1)因?yàn)锽C∥平面GEFH,BC?平面PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC. 同理可證EF∥BC, 因此GH∥EF. (2)連接AC,BD交于點(diǎn)O,BD交EF于點(diǎn)K,連接OP,GK. 因?yàn)镻A=PC,O是AC的中
26、點(diǎn),所以PO⊥AC,同理可得PO⊥BD. 又BD∩AC=O,且AC,BD都在底面內(nèi),所以PO⊥底面ABCD.又因?yàn)槠矫鍳EFH⊥平面ABCD,且PO?平面GEFH, 所以PO∥平面GEFH. 因?yàn)槠矫鍼BD∩平面GEFH=GK, 所以PO∥GK,所以GK⊥底面ABCD, 從而GK⊥EF. 所以GK是梯形GEFH的高. 由AB=8,EB=2得EB∶AB=KB∶DB=1∶4, 從而KB=14DB=12OB,即K為OB的中點(diǎn). 再由PO∥GK得GK=12PO,即G是PB的中點(diǎn),所以GH=12BC=4. 由已知可得OB=42,PO=PB2-OB2=68-32=6, 所以GK=
27、3. 故四邊形GEFH的面積S=GH+EF2·GK=4+82×3=18. C組 教師專用題組 考點(diǎn) 直線、平面平行的判定與性質(zhì) 1.(2014遼寧,4,5分)已知m,n表示兩條不同直線,α表示平面.下列說(shuō)法正確的是( ) A.若m∥α,n∥α,則m∥n B.若m⊥α,n?α,則m⊥n C.若m⊥α,m⊥n,則n∥α D.若m∥α,m⊥n,則n⊥α 答案 B 2.(2016山東,18,12分)在如圖所示的幾何體中,D是AC的中點(diǎn),EF∥DB. (1)已知AB=BC,AE=EC,求證:A
28、C⊥FB; (2)已知G,H分別是EC和FB的中點(diǎn).求證:GH∥平面ABC. 證明 (1)因?yàn)镋F∥DB, 所以EF與DB確定平面BDEF. 連接DE. 因?yàn)锳E=EC,D為AC的中點(diǎn), 所以DE⊥AC. 同理可得BD⊥AC. 又BD∩DE=D, 所以AC⊥平面BDEF, 因?yàn)镕B?平面BDEF, 所以AC⊥FB. (2)設(shè)FC的中點(diǎn)為I.連接GI,HI. 在△CEF中,因?yàn)镚是CE的中點(diǎn), 所以GI∥EF.又EF∥DB, 所以GI∥DB. 在△CFB中,因?yàn)镠是FB的中點(diǎn), 所以HI∥BC. 又HI∩GI=I, 所以平面GHI∥平面ABC. 因
29、為GH?平面GHI,所以GH∥平面ABC. 3.(2015北京,18,14分)如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=2,O,M分別為AB,VA的中點(diǎn). (1)求證:VB∥平面MOC; (2)求證:平面MOC⊥平面VAB; (3)求三棱錐V-ABC的體積. 解析 (1)證明:因?yàn)镺,M分別為AB,VA的中點(diǎn), 所以O(shè)M∥VB. 又因?yàn)閂B?平面MOC, 所以VB∥平面MOC. (2)證明:因?yàn)锳C=BC,O為AB的中點(diǎn),所以O(shè)C⊥AB. 又因?yàn)槠矫鎂AB⊥平面ABC,且OC?平面ABC, 所以O(shè)C⊥平面VA
30、B. 所以平面MOC⊥平面VAB. (3)在等腰直角三角形ACB中,AC=BC=2, 所以AB=2,OC=1. 所以等邊三角形VAB的面積S△VAB=3. 又因?yàn)镺C⊥平面VAB, 所以三棱錐C-VAB的體積等于13OC·S△VAB=33. 又因?yàn)槿忮FV-ABC的體積與三棱錐C-VAB的體積相等, 所以三棱錐V-ABC的體積為33. 4.(2015天津,17,13分)如圖,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=25,AA1=7,BB1=27,點(diǎn)E和F分別為BC和A1C的中點(diǎn). (1)求證:EF∥平面A1B1BA; (2)求證:平面AEA1⊥平
31、面BCB1. 證明 (1)如圖,連接A1B.在△A1BC中,因?yàn)镋和F分別是BC和A1C的中點(diǎn),所以EF∥BA1.又因?yàn)镋F?平面A1B1BA,所以EF∥平面A1B1BA. (2)因?yàn)锳B=AC,E為BC的中點(diǎn),所以AE⊥BC.因?yàn)锳A1⊥平面ABC,BB1∥AA1,所以BB1⊥平面ABC,從而B(niǎo)B1⊥AE.又因?yàn)锽C∩BB1=B,所以AE⊥平面BCB1,又因?yàn)锳E?平面AEA1,所以平面AEA1⊥平面BCB1. 5.(2015廣東,18,14分)如圖,三角形PDC所在的平面與長(zhǎng)方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3. (1)證明:BC∥平面PDA;
32、(2)證明:BC⊥PD; (3)求點(diǎn)C到平面PDA的距離. 解析 (1)證明:因?yàn)樗倪呅蜛BCD是長(zhǎng)方形, 所以AD∥BC. 又因?yàn)锳D?平面PDA,BC?平面PDA,所以BC∥平面PDA. (2)證明:取CD的中點(diǎn),記為E,連接PE,因?yàn)镻D=PC,所以PE⊥DC. 又因?yàn)槠矫鍼DC⊥平面ABCD,平面PDC∩平面ABCD=DC,PE?平面PDC,所以PE⊥平面ABCD. 又BC?平面ABCD,所以PE⊥BC. 因?yàn)樗倪呅蜛BCD為長(zhǎng)方形,所以BC⊥DC. 又因?yàn)镻E∩DC=E,所以BC⊥平面PDC. 而PD?平面PDC,所以BC⊥PD. (3)連接AC.由(2)知
33、,BC⊥PD,又因?yàn)锳D∥BC,所以AD⊥PD,所以S△PDA=12AD·PD=12×3×4=6. 在Rt△PDE中,PE=PD2-DE2=42-32=7. S△ADC=12AD·DC=12×3×6=9. 由(2)知,PE⊥平面ABCD,則PE為三棱錐P-ADC的高. 設(shè)點(diǎn)C到平面PDA的距離為d, 由VC-PDA=VP-ADC,即13d·S△PDA=13PE·S△ADC,亦即13×6d=13×7×9,得d=372. 故點(diǎn)C到平面PDA的距離為372. 6.(2014北京,17,14分)如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,AA1=AC=2,BC=
34、1,E,F分別是A1C1,BC的中點(diǎn). (1)求證:平面ABE⊥平面B1BCC1; (2)求證:C1F∥平面ABE; (3)求三棱錐E-ABC的體積. 解析 (1)證明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC, 所以BB1⊥AB. 又因?yàn)锳B⊥BC, 所以AB⊥平面B1BCC1. 所以平面ABE⊥平面B1BCC1. (2)證明:取AB的中點(diǎn)G,連接EG,FG. 因?yàn)镋,F分別是A1C1,BC的中點(diǎn), 所以FG∥AC,且FG=12AC. 因?yàn)锳C∥A1C1,且AC=A1C1, 所以FG∥EC1,且FG=EC1. 所以四邊形FGEC1為平行四邊形.
35、 所以C1F∥EG. 又因?yàn)镋G?平面ABE,C1F?平面ABE, 所以C1F∥平面ABE. (3)因?yàn)锳A1=AC=2,BC=1,AB⊥BC, 所以AB=AC2-BC2=3. 所以三棱錐E-ABC的體積 V=13S△ABC·AA1=13×12×3×1×2=33. 7.(2014山東,18,12分)如圖,四棱錐P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=12AD,E,F分別為線段AD,PC的中點(diǎn). (1)求證:AP∥平面BEF; (2)求證:BE⊥平面PAC. 證明 (1)設(shè)AC∩BE=O,連接OF,EC. 由于E為AD的中點(diǎn), AB=BC=1
36、2AD,AD∥BC, 所以AE∥BC,AE=AB=BC, 因此四邊形ABCE為菱形, 所以O(shè)為AC的中點(diǎn). 又F為PC的中點(diǎn), 因此在△PAC中, 可得AP∥OF. 又OF?平面BEF,AP?平面BEF, 所以AP∥平面BEF. (2)由題意知ED∥BC,ED=BC, 所以四邊形BCDE為平行四邊形, 因此BE∥CD. 又AP⊥平面PCD,CD?平面PCD, 所以AP⊥CD,因此AP⊥BE. 因?yàn)樗倪呅蜛BCE為菱形, 所以BE⊥AC. 又AP∩AC=A,AP,AC?平面PAC, 所以BE⊥平面PAC. 8.(2014四川,18,12分)在如圖所示的多面體中
37、,四邊形ABB1A1和ACC1A1都為矩形. (1)若AC⊥BC,證明:直線BC⊥平面ACC1A1; (2)設(shè)D,E分別是線段BC,CC1的中點(diǎn),在線段AB上是否存在一點(diǎn)M,使直線DE∥平面A1MC?請(qǐng)證明你的結(jié)論. 解析 (1)證明:因?yàn)樗倪呅蜛BB1A1和ACC1A1都是矩形, 所以AA1⊥AB,AA1⊥AC. 因?yàn)锳B,AC為平面ABC內(nèi)兩條相交直線, 所以AA1⊥平面ABC. 因?yàn)橹本€BC?平面ABC,所以AA1⊥BC. 又AC⊥BC,AA1,AC為平面ACC1A1內(nèi)兩條相交直線, 所以BC⊥平面ACC1A1. (2)存在.證明如下:取線段AB的中點(diǎn)M,連接A1
38、M,MC,A1C,AC1,設(shè)O為A1C,AC1的交點(diǎn). 由已知可知O為AC1的中點(diǎn). 連接MD,OE,則MD,OE分別為△ABC,△ACC1的中位線, 所以MD∥AC且MD=12AC,OE∥AC且OE=12AC,因此MDOE. 連接OM,從而四邊形MDEO為平行四邊形,則DE∥MO. 因?yàn)橹本€DE?平面A1MC,MO?平面A1MC, 所以直線DE∥平面A1MC,即線段AB上存在一點(diǎn)M(線段AB的中點(diǎn)),使直線DE∥平面A1MC. 【三年模擬】 時(shí)間:50分鐘 分值:65分 一、選擇題(每小題5分,共20分) 1.(2019屆吉林10月調(diào)研,3)已
39、知直線a,b,l,平面α,β,則下列命題中正確的個(gè)數(shù)為( ) ①若α⊥β,l⊥α,則l∥β ②若a⊥l,b⊥l,則a∥b ③若α⊥β,l?α,則l⊥β ④若l⊥α,l⊥β,則α∥β A.0 B.1 C.2 D.3 答案 B 2.(2018山東聊城模擬,4)下列四個(gè)正方體中,A,B,C為所在棱的中點(diǎn),則能得出平面ABC∥平面DEF的是( ) 答案 B 3.(2019屆湖南五市十校10月聯(lián)考,8)若平面β截三棱錐所得的截面為平行四邊形,則該三棱錐的所有棱中與平面β平行的棱有( ) A.0
40、條 B.1條 C.2條 D.1條或2條 答案 C 4.(2018湖南長(zhǎng)沙長(zhǎng)郡中學(xué)調(diào)研考試,11)如圖,在四棱錐P-ABCD中,AB⊥AD,BC∥AD,PA=AD=4,AB=BC=2,PA⊥平面ABCD,點(diǎn)E是線段AB的中點(diǎn),點(diǎn)F在線段PA上,且EF∥平面PCD,直線PD與平面CEF交于點(diǎn)H,則線段CH的長(zhǎng)度為( ) A.2 B.2 C.22 D.23 答案 C 二、填空題(共5分) 5.(2017安徽師大附中期中,15)正方體ABCD-A1B1C1D1中,E是棱CC1的中點(diǎn),F是側(cè)面BCC1B1內(nèi)的動(dòng)點(diǎn),且A1F∥平面D1AE,若正方體ABCD-A1B1C1D1的棱長(zhǎng)
41、是2,則F的軌跡被正方形BCC1B1截得的線段長(zhǎng)是 .? 答案 2 三、解答題(共40分) 6.(2019屆河南豫南九校11月聯(lián)考,18)如圖所示,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,∠PAD=∠ABC=90°,設(shè)PE=2EB. (1)求證:AE⊥BC; (2)若直線AB∥平面PCD,且DC=2AB,求證:直線PD∥平面ACE. 證明 (1)∵側(cè)面PAD⊥底面ABCD,且∠PAD=90°,∴PA⊥底面ABCD. 又BC?底面ABCD,∴PA⊥BC. 又∵∠ABC=90°,PA∩AB=A,∴BC⊥平面PAB. 又∵AE?平面PAB,∴AE⊥B
42、C. (2)∵AB∥平面PCD,AB?平面ABCD,且平面ABCD∩平面PCD=DC,∴AB∥DC. 如圖,連接BD交AC于點(diǎn)M,連接EM. ∵AB∥DC,∴∠ABD=∠BDC.又∵∠AMB=∠DMC, ∴△AMB∽△CMD,∴ABCD=MBDM.又DC=2AB,∴DM=2MB. 又∵PE=2EB,∴PD∥EM. 又∵PD?平面EAC,EM?平面EAC,∴PD∥平面ACE. 7.(2019屆廣東佛山9月調(diào)研,18)如圖,在三棱錐F-ACE與三棱錐F-ABC中,△ACE和△ABC都是邊長(zhǎng)為2的等邊三角形,H,D分別為FB,AC的中點(diǎn),EF∥BD,EF=12BD. (1)試在平
43、面EFC內(nèi)作一條直線l,使得P∈l時(shí),均有PH∥平面ABC(作出直線l并證明); (2)求兩棱錐體積之和的最大值. 解析 (1)如圖,設(shè)FC的中點(diǎn)為I,EC的中點(diǎn)為G,連接GI,則直線GI即為所作直線l. 證明:連接GH,HI,因?yàn)镠,I分別為FB,FC的中點(diǎn),所以HI∥BC, 又HI?平面ABC,BC?平面ABC,所以HI∥平面ABC. 因?yàn)镚,I分別為EC,FC的中點(diǎn),所以GI∥EF. 因?yàn)镋F∥BD,所以GI∥BD. 又GI∩HI=I,GI、HI?平面GHI,所以平面GHI∥平面ABC. 由P∈GI知PH?平面GHI,所以PH∥平面ABC. (2)因?yàn)镋F∥BD
44、,所以EF與BD確定一個(gè)平面. 連接DE,因?yàn)锳E=CE,D為AC的中點(diǎn), 所以DE⊥AC,同理DB⊥AC. 又DB∩DE=D,所以AC⊥平面BDEF. 所以VF-ACE+VF-ABC=VA-BDEF+VC-BDEF =13S四邊形BDEF×AC=13×(EF+BD)h2×AC, 其中,2EF=BD=3,h為梯形BDEF的高,h≤ED, 當(dāng)平面ACE⊥平面ABC時(shí),hmax=ED=3, 所以(VF-ACE+VF-ABC)max=13×32+3×32×2=32. 8.(2019屆廣東珠海一中期中考試,20)如圖所示,在四棱錐P-ABCD中,底面四邊形ABCD是菱形,AC∩BD=
45、O,△PAC是邊長(zhǎng)為2的等邊三角形,PB=PD=6,AP=4AF. (1)求四棱錐P-ABCD的體積; (2)在線段PB上是否存在一點(diǎn)M,使得CM∥平面BDF?如果存在,求出BMBP的值;如果不存在,請(qǐng)說(shuō)明理由. 解析 (1)∵底面ABCD是菱形,AC∩BD=O, ∴O為AC,BD的中點(diǎn). 又∵PA=PC,PB=PD, ∴PO⊥AC,PO⊥BD. ∵AC∩BD=O,AC?平面ABCD,BD?平面ABCD, ∴PO⊥底面ABCD. 在等邊△PAC中,AC=2,∴PO=3. 在△PBD中,PB=PD=6,則BO=(6)2-(3)2=3, ∴BD=23. ∴VP-ABCD
46、=13·S菱形ABCD·PO=13×12×2×23×3=2. (2)存在.如圖,過(guò)C作CE∥BD交AB的延長(zhǎng)線于E,過(guò)E作EH∥BF交PA于H,交PB于M. ∵CE∥BD,BD?平面BDF,CE?平面BDF, ∴CE∥平面BDF. ∵EH∥BF,BF?平面BDF,EH?平面BDF, ∴EH∥平面BDF. 又∵CE∩EH=E,CE?平面CEM,EH?平面CEM, ∴平面BDF∥平面CEM.又CM?平面CEM, ∴CM∥平面BDF. ∵BD∥CE,DC∥BE, ∴四邊形BECD為平行四邊形. ∴DC=BE=AB,∴B為AE的中點(diǎn). ∵AF=14AP,EH∥BF, ∴H
47、為PA的中點(diǎn). ∴在△PAE中,M為中線PB與中線EH的交點(diǎn). ∴M為△PAE的重心,∴BMBP=13. 9.(2018河南六市三模,18)已知空間幾何體ABCDE中,△BCD與△CDE均是邊長(zhǎng)為2的等邊三角形,△ABC是腰長(zhǎng)為3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD. (1)試在平面BCD內(nèi)作一條直線,使得直線上任意一點(diǎn)F與E的連線EF均與平面ABC平行,并給出證明; (2)求三棱錐E-ABC的體積. 解析 (1)如圖所示,取DC的中點(diǎn)N,取BD的中點(diǎn)M,連接MN,則MN即為所求. 證明:連接EM,EN,取BC的中點(diǎn)H,連接AH, ∵△ABC是腰長(zhǎng)為
48、3的等腰三角形,BC=2,H為BC的中點(diǎn), ∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,AH?平面ABC, ∴AH⊥平面BCD,同理可證EN⊥平面BCD, ∴EN∥AH, ∵EN?平面ABC,AH?平面ABC, ∴EN∥平面ABC. 又M,N分別為BD,DC的中點(diǎn), ∴MN∥BC, ∵M(jìn)N?平面ABC,BC?平面ABC, ∴MN∥平面ABC. 又MN∩EN=N,MN?平面EMN,EN?平面EMN, ∴平面EMN∥平面ABC, 又EF?平面EMN, ∴EF∥平面ABC, 即直線MN上任意一點(diǎn)F與E的連線EF均與平面ABC平行. (2)連接DH,取CH的中點(diǎn)G,連接NG,則NG∥DH, 由(1)可知EN∥平面ABC, ∴點(diǎn)E到平面ABC的距離與點(diǎn)N到平面ABC的距離相等, 又△BCD是邊長(zhǎng)為2的等邊三角形, ∴DH⊥BC, 又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,DH?平面BCD, ∴DH⊥平面ABC, ∴NG⊥平面ABC, 易知DH=3,∴NG=32, 又S△ABC=12·BC·AH=12×2×32-12=22, ∴VE-ABC=13·S△ABC·NG=63.
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 銷售技巧培訓(xùn)課件:接近客戶的套路總結(jié)
- 20種成交的銷售話術(shù)和技巧
- 銷售技巧:接近客戶的8種套路
- 銷售套路總結(jié)
- 房產(chǎn)銷售中的常見(jiàn)問(wèn)題及解決方法
- 銷售技巧:值得默念的成交話術(shù)
- 銷售資料:讓人舒服的35種說(shuō)話方式
- 汽車銷售績(jī)效管理規(guī)范
- 銷售技巧培訓(xùn)課件:絕對(duì)成交的銷售話術(shù)
- 頂尖銷售技巧總結(jié)
- 銷售技巧:電話營(yíng)銷十大定律
- 銷售逼單最好的二十三種技巧
- 銷售最常遇到的10大麻煩
- 銷售資料:銷售10大黃金觀念
- 銷售資料:導(dǎo)購(gòu)常用的搭訕?lè)椒?/a>