《2017-2018學(xué)年高中創(chuàng)新設(shè)計(jì)物理粵教版選修3-5課件:1-1,1-2(1) 物體的碰撞 動(dòng)量 動(dòng)量守恒定律》由會(huì)員分享,可在線閱讀,更多相關(guān)《2017-2018學(xué)年高中創(chuàng)新設(shè)計(jì)物理粵教版選修3-5課件:1-1,1-2(1) 物體的碰撞 動(dòng)量 動(dòng)量守恒定律(28頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 第一節(jié)物體的碰撞第二節(jié)(1)動(dòng)量動(dòng)量守恒定律 目標(biāo)定位1.探究物體彈性碰撞的一些特點(diǎn),知道彈性碰撞和非彈性碰撞.2.理解動(dòng)量、沖量的概念,知道動(dòng)量的變化量也是矢量.3.理解動(dòng)量定理并能解釋和解決實(shí)際問(wèn)題.4.理解動(dòng)量與動(dòng)能、動(dòng)量定理與動(dòng)能定理的區(qū)別 一、物體的碰撞1碰撞碰撞就是兩個(gè)或兩個(gè)以上的物體在相遇的 時(shí)間內(nèi)產(chǎn)生非常大的相互作用的過(guò)程其最主要特點(diǎn)是:相互作用 ,作用力 和作用力峰值 等極短時(shí)間短變化快大 2碰撞的分類(1)按碰撞前后,物體的運(yùn)動(dòng)方向是否沿同一條直線可分為:正碰(對(duì)心碰撞):作用前后 斜碰(非對(duì)心碰撞):作用前后 (2)按碰撞過(guò)程中機(jī)械能是否損失分為:彈性碰撞:碰撞前后系統(tǒng)
2、的動(dòng)能 ,Ek1Ek2Ek1Ek2.非彈性碰撞:碰撞前后系統(tǒng)的動(dòng)能不再相等,E k1Ek2Ek1Ek2.沿同一條直線不沿同一條直線相等 二、動(dòng)量及其改變1沖量(1)定義:物體受到的 與 的乘積(2)定義式:I .(3)單位:在國(guó)際單位制中,沖量的單位是 ,符號(hào)為 .力力的作用時(shí)間Ft牛頓秒Ns 2動(dòng)量(1)定義:運(yùn)動(dòng)物體的 和它的 的乘積(2)定義式:p .(3)單位:在國(guó)際單位制中,動(dòng)量的單位是 ,符號(hào)為 .(4)方向:動(dòng)量是矢量,其方向與速度方向相同質(zhì)量速度m v千克米每秒kgms1 3動(dòng)量的變化量物體在某段時(shí)間內(nèi) 與 的矢量差(也是矢量),p (矢量式)4動(dòng)量定理(1)內(nèi)容:物體所受 的
3、沖量,等于物體 (2)公式:Ftm vtm v0.末動(dòng)量初動(dòng)量pp0合力動(dòng)量的改變量 預(yù)習(xí)完成后,請(qǐng)把你疑惑的問(wèn)題記錄在下面的表格中問(wèn)題1問(wèn)題2問(wèn)題3 一、彈性碰撞和非彈性碰撞1碰撞中能量的特點(diǎn):碰撞過(guò)程中,一般伴隨機(jī)械能的損失,即:Ek1Ek2Ek10Ek20.2彈性碰撞:兩個(gè)物體碰撞后形變能夠完全恢復(fù),碰撞后沒(méi)有動(dòng)能轉(zhuǎn)化為其他形式的能,即碰撞前后兩物體構(gòu)成的系統(tǒng)的動(dòng)能相等3非彈性碰撞:兩個(gè)物體碰撞后形變不能完全恢復(fù),該過(guò)程有動(dòng)能轉(zhuǎn)化為其他形式的能,總動(dòng)能減少非彈性碰撞的特例:兩物體碰撞后粘在一起以共同的速度運(yùn)動(dòng),該碰撞稱為完全非彈性碰撞,碰撞過(guò)程能量損失最多 【例1】一個(gè)質(zhì)量為2 kg的小
4、球A以v03 m/s的速度與一個(gè)靜止的、質(zhì)量為1 kg的小球B正碰,試根據(jù)以下數(shù)據(jù),分析碰撞性質(zhì):(1)碰后小球A、B的速度均為2 m/s;(2)碰后小球A的速度為1 m/s,小球B的速度為4 m/s.答案(1)非彈性碰撞(2)彈性碰撞 針對(duì)訓(xùn)練1現(xiàn)有甲、乙兩滑塊,質(zhì)量分別為3m和m,以相同的速率v在光滑水平面上相向運(yùn)動(dòng),發(fā)生了碰撞已知碰撞后甲滑塊靜止不動(dòng),乙滑塊反向運(yùn)動(dòng),且速度大小為2v.那么這次碰撞是()A彈性碰撞 B非彈性碰撞C完全非彈性碰撞 D條件不足,無(wú)法確定答案A 3動(dòng)量的變化量(p)ppp0(1)若p、p0在同一條直線上,先規(guī)定正方向,再用正、負(fù)號(hào)表示p、p0的方向,則可用ppp
5、0m vtm v0進(jìn)行代數(shù)運(yùn)算(2)動(dòng)量變化量的方向:與速度變化的方向相同 【例2】羽毛球是速度較快的球類運(yùn)動(dòng)之一,運(yùn)動(dòng)員扣殺羽毛球的速度可達(dá)到342 km/h,假設(shè)球飛來(lái)的速度為90 km/h,運(yùn)動(dòng)員將球以 342 km/h的速度反向擊回設(shè)羽毛球的質(zhì)量為5 g,試求:(1)運(yùn)動(dòng)員擊球過(guò)程中羽毛球的動(dòng)量變化量;(2)在運(yùn)動(dòng)員的這次扣殺中,羽毛球的動(dòng)能變化量是多少?答案(1)0.6 kgm/s,方向與球飛來(lái)的方向相反(2)21 J 借題發(fā)揮關(guān)于動(dòng)量變化量的計(jì)算(1)若初、末動(dòng)量在同一直線上,則在選定正方向的前提下,可化矢量運(yùn)算為代數(shù)運(yùn)算(2)若初、末動(dòng)量不在同一直線上,運(yùn)算時(shí)應(yīng)遵循平行四邊形定則
6、 三、對(duì)動(dòng)量定理的理解和應(yīng)用1動(dòng)量定理的理解(1)動(dòng)量定理的表達(dá)式Ftm vtm v0是矢量式,等號(hào)包含了大小相等、方向相同兩方面的含義(2)動(dòng)量定理反映了合外力的沖量是動(dòng)量變化的原因(3)公式中的F是物體所受的合外力,若合外力是變力,則F應(yīng)是合外力在作用時(shí)間內(nèi)的平均值 2動(dòng)量定理的應(yīng)用(1)定性分析有關(guān)現(xiàn)象:物體的動(dòng)量變化量一定時(shí),力的作用時(shí)間越短,力就越大;力的作用時(shí)間越長(zhǎng),力就越小作用力一定時(shí),力的作用時(shí)間越長(zhǎng),動(dòng)量變化量越大;力的作用時(shí)間越短,動(dòng)量變化量越小(2)應(yīng)用動(dòng)量定理定量計(jì)算的一般步驟:選定研究對(duì)象,明確運(yùn)動(dòng)過(guò)程進(jìn)行受力分析和運(yùn)動(dòng)的初、末狀態(tài)分析選定正方向,根據(jù)動(dòng)量定理列方程求
7、解 【例3】在水平力F30 N的作用下,質(zhì)量m5 kg的物體由靜止開始沿水平面運(yùn)動(dòng)已知物體與水平面間的動(dòng)摩擦因數(shù)0.2,若F作用6 s后撤去,撤去F后物體還能向前運(yùn)動(dòng)多長(zhǎng)時(shí)間才停止?(g取10 m/s2)答案12 s 針對(duì)訓(xùn)練2質(zhì)量為0.5 kg的彈性小球,從1.25 m高處自由下落,與地板碰撞后回跳高度為0.8 m,g取10 m/s2.(1)若地板對(duì)小球的平均沖力大小為100 N,求小球與地板的碰撞時(shí)間;(2)若小球與地板碰撞無(wú)機(jī)械能損失,碰撞時(shí)間為0.1 s,求小球?qū)Φ匕宓钠骄鶝_力答案(1)0.047 s(2)55 N,方向豎直向下 (2)由于小球與地板碰撞無(wú)機(jī)械能損失故碰撞后球的速度:v25 m/s,方向豎直向上由動(dòng)量定理得(Fm g)tm v2(m v1)解得F55 N由牛頓第三定律得小球?qū)Φ匕宓钠骄鶝_力大小為55 N,方向豎直向下.