【名師點(diǎn)睛】中考數(shù)學(xué)一輪復(fù)習(xí)專題 二次函數(shù)及答案
《【名師點(diǎn)睛】中考數(shù)學(xué)一輪復(fù)習(xí)專題 二次函數(shù)及答案》由會(huì)員分享,可在線閱讀,更多相關(guān)《【名師點(diǎn)睛】中考數(shù)學(xué)一輪復(fù)習(xí)專題 二次函數(shù)及答案(12頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2017年中考數(shù)學(xué) 一輪復(fù)習(xí)專題 二次函數(shù) 綜合復(fù)習(xí) 一 選擇題: 1.已知是y關(guān)于x的二次函數(shù),那么m的值為( ) A.-2 B. 2 C. D. 0 2.二次函數(shù)y=x2﹣2x+4化為y=a(x﹣h)2+k的形式,下列正確的是( ) A.y=(x﹣1)2+2 B.y=(x﹣1)2+3 C.y=(x﹣2)2+2 D.y=(x﹣2)2+4 3.已知拋物線y=x2﹣x﹣1,與x軸的一個(gè)交點(diǎn)為(m,0),則代數(shù)式m2﹣m+2016的值為( ?。? A.2015 B.2
2、016 C.2017 D.2010 4.二次函數(shù)y=(x﹣1)2+2的最小值為( ) A.1 B.-1 C.2 D.-2 5.將拋物線先向左平移2個(gè)單位,再向上平移3個(gè)單位后得到新的拋物線,則新拋物線的表達(dá)式 是( ) A. B. C. D. 6.已知二次函數(shù)y=(x﹣h)2+1(h為常數(shù)),在自變量x的值滿足1≤x≤3的情況下,與其對(duì)應(yīng)的函數(shù)值y的最小值為5,則h的值為( ) A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1
3、或3 7.拋物線y=2x2﹣2x+1與坐標(biāo)軸的交點(diǎn)個(gè)數(shù)是( ) A.0B.1 C.2 D.3 8.設(shè)A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=-(x+1)2+3上的三點(diǎn),則y1,y2,y3大小關(guān)系為( ?。? A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y2 9.二次函數(shù)y=ace+bx+c圖像上部分點(diǎn)的坐標(biāo)如下表所示 則該函數(shù)的頂點(diǎn)坐標(biāo)為( ) A.(-3,-3) B.(-2.-2) C.(-1,-3) D.(0,-6〕 10.如圖是一個(gè)橫斷面為拋物線
4、形狀的拱橋,當(dāng)水面寬4m時(shí),拱頂(拱橋洞的最高點(diǎn))離水面2m,當(dāng)水面下降1m時(shí),水面的寬度為( ) A.3 B.2 C.3 D.2 11.向空中發(fā)射一枚炮彈,經(jīng)x秒后的高度為y米,且時(shí)間與高度的關(guān)系為y=ax2+bx+c(a≠0).若此炮彈在第7秒與第14秒時(shí)的高度相等,則在下列時(shí)間中炮彈所在高度最高的是( ) A.第8秒 B.第10秒 C.第12秒 D.第15秒 12.已知函數(shù)y=ax2﹣2ax﹣1(a是常數(shù),a≠0),下列結(jié)論正確的是( ?。? A.當(dāng)a=1時(shí),函數(shù)圖象過點(diǎn)(﹣1
5、,1) B.當(dāng)a=﹣2時(shí),函數(shù)圖象與x軸沒有交點(diǎn) C.若a>0,則當(dāng)x≥1時(shí),y隨x的增大而減小 D.若a<0,則當(dāng)x≤1時(shí),y隨x的增大而增大 13.若二次函數(shù)y=x2+mx的對(duì)稱軸是x=3,則關(guān)于x的方程x2+mx=7的解為( ?。? A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=7 14.已知二次函數(shù)y=x2﹣x+a(a>0),當(dāng)自變量x取m時(shí),其相應(yīng)的函數(shù)值y<0,那么下列結(jié)論中正確的是( ?。? A.m﹣1的函數(shù)值小于0 B.m﹣1
6、的函數(shù)值大于0 C.m﹣1的函數(shù)值等于0 D.m﹣1的函數(shù)值與0的大小關(guān)系不確定 15.已知函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo)為 且,則該函數(shù)的最小值是( ?。? A.2 B.-2 C.10 D.-10 16.設(shè)二次函數(shù)y1=a(x-x1)(x-x2)(a≠0,x1≠x2)的圖象與一次函數(shù)y2=dx+e(d≠0)的圖象交于點(diǎn)(x1,0),若函數(shù)y=y(tǒng)2+y1的圖象與x軸僅有一個(gè)交點(diǎn),則( ) A. a(x1-x2)=d B. a(x2-x1)=d C. a(x1-x2)2=d
7、 D. a(x1+x2)2=d 17.如圖,拋物線y=ax2+bx+c的對(duì)稱軸是x=﹣1.且過點(diǎn)(,0),有下列結(jié)論:①abc>0;②a﹣2b+4c=0; ③25a﹣10b+4c=0; ④3b+2c>0; ⑤a﹣b≥m(am﹣b);其中所有正確的結(jié)論是( ?。? A.①②③ B.①③④ C.①②③⑤ D.①③⑤ 18.矩形ABCD的邊BC在直線l上,AB=2,BC=4,P是AD邊上一動(dòng)點(diǎn)且不與點(diǎn)D重合,連結(jié)CP,過點(diǎn)P作∠APE=∠CPD,交直線l于點(diǎn)E,若PD的長為x,△PEC與矩形ABCD重合部分的面積為y,則下列圖象
8、中,能表示y與x的函數(shù)關(guān)系的圖象大致是( ) 19.如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1.下列結(jié)論:①abc>0; ②4a+2b+c>0; ③4ac﹣b2<8a; ④<a<;⑤b>c.其中含所有正確結(jié)論的選項(xiàng)是( ?。? A.①③ B.①③④ C.②④⑤ D.①③④⑤ 20.如圖,正方形ABCD中,AB=8cm,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E、F分別從B、C兩點(diǎn)同時(shí)出發(fā),以1cm/s的
9、速度沿BC、CD運(yùn)動(dòng),到點(diǎn)C、D時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△OEF的面積為S(cm2),則S(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為() 二 填空題: 21.拋物線y=x2+3x+2不經(jīng)過第 象限. 22.將y=2x2﹣12x﹣12變?yōu)閥=a(x﹣m)2+n的形式,則m?n= ?。? 23.若函數(shù)y=mx2﹣2x+1的圖象與x軸只有一個(gè)交點(diǎn),則m= ?。? 24.如圖是某地一座拋物線形拱橋,橋拱在豎起平面內(nèi),與水平橋面相交于A,B兩點(diǎn),橋拱最高點(diǎn)C到AB的距離為9m,AB=36m,D,E為橋拱底部的兩點(diǎn),且DE∥AB,點(diǎn)E到直線AB的距離為7 m,則DE的
10、長為 m. 25.如圖,拋物線的頂點(diǎn)為P(-2,2),與y軸交于點(diǎn)A(0,3).若平移該拋物線使其頂點(diǎn)P沿直線移動(dòng)到點(diǎn)P′(2,-2),點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,則拋物線上PA段掃過的區(qū)域(陰影部分)的面積為__ 26.二次函數(shù)y=x2的圖象如圖,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在y軸的正半軸上,點(diǎn)B、C在二次函數(shù)y=x2的圖象上,四邊形OBAC為菱形,且∠OBA=120,則菱形OBAC的面積為 ?。? 27.初三數(shù)學(xué)課本上,用“描點(diǎn)法”畫二次函數(shù)y=ax2+bx+c的圖象時(shí),列了如下表格: x … ﹣2 ﹣1 0 1 2 … y
11、… ﹣15.5 ﹣5 ﹣3.5 ﹣2 ﹣3.5 … 根據(jù)表格上的信息回答問題:該二次函數(shù)y=ax2+bx+c在x=3時(shí),y=_______. 28.如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+c(a≠0)的圖象過正方形ABOC的三個(gè)頂點(diǎn)A、B、C,則ac的值是_______. 29.如圖所示,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(﹣1,0)和(0,﹣1)兩點(diǎn),則化簡(jiǎn)代數(shù)式+=__________. 30.如圖,我們把拋物線y=-x(x-3)(0≤x≤3)記為C1,它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180得C2, 交x 軸于另一點(diǎn)A2;將C2繞點(diǎn)A2
12、旋轉(zhuǎn)180得C3,交x 軸于另一點(diǎn)A3;……;如此進(jìn)行下去,直至得C2016.①C1的對(duì)稱軸方程是 ;②若點(diǎn)P(6047,m)在拋物線C2016上, 則m = . 三 計(jì)算題: 31.已知函數(shù)是關(guān)于的二次函數(shù),求: (1)滿足條件m的值。 (2)m為何值時(shí),拋物線有最底點(diǎn)?求出這個(gè)最底點(diǎn)的坐標(biāo),這時(shí)為何值時(shí)y隨的增大而增大? (3)m為何值時(shí),拋物線有最大值?最大值是多少?這時(shí)為何值時(shí),y隨的增大而減?。? 32.雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點(diǎn))的路線是拋物線的一部分,如圖。 (1)求演
13、員彈跳離地面的最大高度; (2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點(diǎn)A的水平距離是4米,問這次表演是否成功?請(qǐng)說明理由。 四 簡(jiǎn)答題: 33.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為20元/千克.市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w (千克)與銷售價(jià)x (元/千克)有如下關(guān)系:w=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為y (元). (1)求y與x之間的函數(shù)關(guān)系式,自變量x的取值范圍; (2)當(dāng)銷售價(jià)定為多少元時(shí),每天的銷售利潤最大?最大利潤是多少? 34.某商店經(jīng)營一種小商品,進(jìn)價(jià)是2.5元,據(jù)市場(chǎng)調(diào)查,
14、銷售價(jià)是13.5元時(shí),平均每天銷售是500件,而銷售價(jià)每降低1元,平均每天就可以多售出100件. (1)假定每件商品降價(jià)x元,商店每天銷售這種小商品的利潤是 y元,請(qǐng)寫出y與x間的函數(shù)關(guān)系式; (2)每件小商品銷售價(jià)是多少元時(shí),商店每天銷售這種小商品的利潤最大?最大利潤是多少? 35.如圖,要建一個(gè)長方形養(yǎng)雞場(chǎng),雞場(chǎng)的一邊靠墻(墻足夠長),如果用50m長的籬笆圍成中間有一道籬笆墻的養(yǎng)雞場(chǎng),設(shè)它的長度為x(籬笆墻的厚度忽略不計(jì))。 (1)要使雞場(chǎng)面積最大,雞場(chǎng)的長度應(yīng)為多少米? (2)如果中間有n(n是大于1的整數(shù))到道籬笆墻,要使雞場(chǎng)面積最大,
15、雞場(chǎng)的長應(yīng)為多少米?比較(1)(2)的結(jié)果,要使雞場(chǎng)面積最大,雞場(chǎng)長度與中間隔離墻的道數(shù)有怎樣的關(guān)系? 36.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為20元/千克.市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w (千克)與銷售價(jià)x (元/千克)有如下關(guān)系:w=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為y (元). (1)求y與x之間的函數(shù)關(guān)系式,自變量x的取值范圍; (2)當(dāng)銷售價(jià)定為多少元時(shí),每天的銷售利潤最大?最大利潤是多少? (3)如果物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不得高于28元/千克,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價(jià)應(yīng)定為多少元?(參考關(guān)系
16、:銷售額=售價(jià)銷量,利潤=銷售額﹣成本) 37.為支持國家南水北調(diào)工程建設(shè),小王家由原來養(yǎng)殖戶變?yōu)榉N植戶,經(jīng)市場(chǎng)調(diào)查得知,種植草莓不超過20畝時(shí),所得利潤y(元)與種植面積m(畝)滿足關(guān)系式y(tǒng)=1500m;超過20畝時(shí),y=1380m+2400.而當(dāng)種植櫻桃的面積不超過15畝時(shí),每畝可獲得利潤1800元;超過15畝時(shí),每畝獲得利潤z(元)與種植面積x(畝)之間的函數(shù)關(guān)系如下表(為所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)中的一種). x(畝) 20 25 30 35 z(元) 1700 1600 1500 1400 (1)
17、設(shè)小王家種植x畝櫻桃所獲得的利潤為P元,直接寫出P關(guān)于x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;(2)如果小王家計(jì)劃承包40畝荒山種植草莓和櫻桃,當(dāng)種植櫻桃面積x(畝)滿足0<x<20時(shí),求小王家總共獲得的利潤w(元)的最大值. 38.九(1)班數(shù)學(xué)興趣小組經(jīng)過市場(chǎng)調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價(jià)與銷售量的相關(guān)信息如下表: 時(shí)間x(天) 1≤x<50 50≤x≤90 售價(jià)(元/件) x+40 90 每天銷量(件) 200﹣2x 200﹣2x 已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品的
18、每天利潤為y元 (1)求出y與x的函數(shù)關(guān)系式; (2)問銷售該商品第幾天時(shí),當(dāng)天銷售利潤最大,最大利潤是多少? (3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請(qǐng)直接寫出結(jié)果. 39.如圖,已知拋物線y=﹣x2﹣x+2與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C. ⑴求點(diǎn)A,B,C的坐標(biāo); ⑵點(diǎn)E是此拋物線上的點(diǎn),點(diǎn)F是其對(duì)稱軸上的點(diǎn),求以A,B,E,F(xiàn)為頂點(diǎn)的平行四邊形的面積; ⑶此拋物線的對(duì)稱軸上是否存在點(diǎn)M,使得△ACM是等腰三角形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
19、 40.如圖,已知在平面直角坐標(biāo)系中,二次函數(shù)y=ax2﹣的圖象經(jīng)過點(diǎn)、A(0,8)、B(6,2)、C(9,m),延長AC交x軸于點(diǎn)D. (1)求這個(gè)二次函數(shù)的解析式及的m值; (2)求∠ADO的余切值; (3)過點(diǎn)B的直線分別與y軸的正半軸、x軸、線段AD交于點(diǎn)P(點(diǎn)A的上方)、M、Q,使以點(diǎn)P、A、Q為頂點(diǎn)的三角形與△MDQ相似,求此時(shí)點(diǎn)P的坐標(biāo). 參考答案 1、【答案】A 2、【答案】B 3、【答案】C.4、【答案】C 5、【答案】A 6、【答案
20、】B 7、【答案】C 8、【答案】A. 9、【答案】B 10、【答案】B 11、【答案】B 12、【答案】D 13、【答案】D 14、【答案】B 15、【答案】D 16、【答案】B 17、【答案】D 18、【答案】A 19、【答案】D 20、【答案】B 21、四 22、-90 23、0或1 24、48 25、12__. 26、 2?。? 27、﹣5?。?28、﹣2?。?9、?。? 30、y=(x-6045)(x-6048);m=-2 31、解:(1)由已知得:解得:∴ (2)當(dāng)m=2時(shí),拋物線有最低點(diǎn),最低點(diǎn)的坐標(biāo)為(0,0)當(dāng)時(shí),y
21、隨的增大而增大。 (3)當(dāng)m= ―3時(shí),拋物線有最大值,最大值為0,當(dāng)時(shí),y隨的增大而減小。 32、解:(1)= ∵,∴函數(shù)的最大值是。答:演員彈跳的最大高度是米。 (2)當(dāng)x=4時(shí),=3.4=BC,所以這次表演成功。 33、【解答】解:(1)y=w(x﹣20)=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600, 則y=﹣2x2+120x﹣1600. 由題意,有,解得20≤x≤40. 故y與x的函數(shù)關(guān)系式為:y=﹣2x2+120x﹣1600,自變量x的取值范圍是20≤x≤40; (2)∵y=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∴當(dāng)x=30時(shí),y
22、有最大值200. 故當(dāng)銷售價(jià)定為30元/千克時(shí),每天可獲最大銷售利潤200元; 34、解:設(shè)降價(jià)x元時(shí)利潤最大為y元, 依題意:y=(13.5-x-2.5)(500+100x),整理得:y=-100(x-3)2+6400(0≤x≤11); ∵a=-100<0,∴當(dāng)x=3時(shí)y取最大值,最大值是6400,即降價(jià)3元時(shí)利潤最大, ∴銷售單價(jià)為10.5元時(shí),最大利潤6400元. 答:銷售單價(jià)為10.5元時(shí)利潤最大,最大利潤為6400元. 35、解:(1)依題意得:雞場(chǎng)面積: 因?yàn)?,所以?dāng)x=25時(shí),y最大=. 即雞場(chǎng)的長度為25m時(shí),其面積最大為m2. (2)如中間有n道隔墻,則隔
23、墻長為,所以 所以當(dāng)x=25時(shí),y最大=.即雞場(chǎng)的長度為25m時(shí),其面積最大為m2. 結(jié)論:無論雞場(chǎng)中間有多少道籬笆隔墻,要使雞場(chǎng)面積最大,其長都是25m. 36、【解答】解:(1)y=w(x﹣20)=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600, 則y=﹣2x2+120x﹣1600.由題意,有,解得20≤x≤40. 故y與x的函數(shù)關(guān)系式為:y=﹣2x2+120x﹣1600,自變量x的取值范圍是20≤x≤40; (2)∵y=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∴當(dāng)x=30時(shí),y有最大值200. 故當(dāng)銷售價(jià)定為30元/千克時(shí),每天
24、可獲最大銷售利潤200元; (3)當(dāng)y=150時(shí),可得方程﹣2x2+120x﹣1600=150,整理,得x2﹣60x+875=0,解得x1=25,x2=35. ∵物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不得高于28元/千克,∴x2=35不合題意,應(yīng)舍去. 故當(dāng)銷售價(jià)定為25元/千克時(shí),該農(nóng)戶每天可獲得銷售利潤150元. 37、【解答】解:(1)觀察圖表的數(shù)量關(guān)系,可以得出P關(guān)于x的函數(shù)關(guān)系式為:P= (2)∵利潤=畝數(shù)每畝利潤,∴①當(dāng)0<x≤15時(shí),W=1800x+1380(40﹣x)+2400=420x+57600; 當(dāng)x=15時(shí),W有最大值,W最大=6300+57600=63900; ②
25、當(dāng)15<x<20,W=﹣20x2+2100x+1380(40﹣x)+2400=﹣20(x﹣18)2+64080; ∴x=18時(shí)有最大值為:64080元.綜上x=18時(shí),有最大利潤64080. 38、【解答】解:(1)當(dāng)1≤x<50時(shí),y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000, 當(dāng)50≤x≤90時(shí),y=(200﹣2x)(90﹣30)=﹣120x+12000,綜上所述:y=; (2)當(dāng)1≤x<50時(shí),y=﹣2x2+180x+2000,y=﹣2(x﹣45)2+6050. ∴a=﹣2<0,∴二次函數(shù)開口下,二次函數(shù)對(duì)稱軸為x=45, 當(dāng)x=45時(shí),y最大=605
26、0, 當(dāng)50≤x≤90時(shí),y隨x的增大而減小, 當(dāng)x=50時(shí),y最大=6000, 綜上所述,該商品第45天時(shí),當(dāng)天銷售利潤最大,最大利潤是6050元; (3)①當(dāng)1≤x<50時(shí),y=﹣2x2+180x+2000≥4800,解得:20≤x<70, 因此利潤不低于4800元的天數(shù)是20≤x<50,共30天; ②當(dāng)50≤x≤90時(shí),y=﹣120x+12000≥4800,解得:x≤60, 因此利潤不低于4800元的天數(shù)是50≤x≤60,共11天, 所以該商品在整個(gè)銷售過程中,共41天每天銷售利潤不低于4800元. 39、解:(1)令y=0得﹣x2﹣x+2=0,∴x2+2x﹣8=0,
27、 x=﹣4或2,∴點(diǎn)A坐標(biāo)(2,0),點(diǎn)B坐標(biāo)(﹣4,0),令x=0,得y=2,∴點(diǎn)C坐標(biāo)(0,2). (2)由圖象可知AB只能為平行四邊形的邊, ∵AB=EF=6,對(duì)稱軸x=﹣1, ∴點(diǎn)E的橫坐標(biāo)為﹣7或5,∴點(diǎn)E坐標(biāo)(﹣7,﹣)或(5,﹣),此時(shí)點(diǎn)F(﹣1,﹣) ∴以A,B,E,F(xiàn)為頂點(diǎn)的平行四邊形的面積=6=. (3)如圖所示, ①當(dāng)C為頂點(diǎn)時(shí),CM1=CA,CM2=CA,作M1N⊥OC于N,在RT△CM1N中,CN==, ∴點(diǎn)M1坐標(biāo)(﹣1,2+),點(diǎn)M2坐標(biāo)(﹣1,2﹣). ②當(dāng)M3為頂點(diǎn)時(shí), ∵直線AC解析式為y=﹣x+2,線段AC的垂直平分線為y=x,∴點(diǎn)M
28、3坐標(biāo)為(﹣1,﹣1). ③當(dāng)點(diǎn)A為頂點(diǎn)的等腰三角形不存在. 綜上所述點(diǎn)M坐標(biāo)為(﹣1,﹣1)或(﹣1,2+)或(﹣1,2﹣). 40、【解答】解:(1)把A(0,8)、B(6,2)代入y=ax2﹣,得 ,解得,故該二次函數(shù)解析式為:y=x2﹣x+8. 把C(9,m),代入y=x2﹣x+8得到:m=y=92﹣9+8=5,即m=5. 綜上所述,該二次函數(shù)解析式為y=x2﹣x+8,m的值是5; (2)由(1)知,點(diǎn)C的坐標(biāo)為:(9,5), 又由點(diǎn)A的坐標(biāo)為(0,8),所以直線AC的解析式為:y=﹣x+8, 令y=0,則0=﹣x+8,解得x=24,即OD=24,所以cot∠ADO===3,即cot∠ADO=3; (3)在△APQ與△MDQ中,∠AQP=∠MQD. 要使△APQ與△MDQ相似,則∠APQ=∠MDQ或∠APQ=∠DMQ(根據(jù)題意,這種情況不可能), ∴cot∠APQ=cot∠MDQ=3.作BH⊥y軸于點(diǎn)H, 在直角△PBH中,cot∠P==3,∴PH=18,OP=20,∴點(diǎn)P的坐標(biāo)是(0,20). 第 12 頁 共 12 頁
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 初中語文作文素材:30篇文學(xué)名著開場(chǎng)白
- 初中語文答題技巧:現(xiàn)代文閱讀-說明文閱讀知識(shí)點(diǎn)總結(jié)
- 初中語文作文十大??荚掝}+素材
- 初中語文作文素材:描寫冬天的好詞、好句、好段總結(jié)
- 初中語文必考名著總結(jié)
- 初中語文作文常見主題總結(jié)
- 初中語文考試常考名著總結(jié)
- 初中語文必考50篇古詩文默寫
- 初中語文易錯(cuò)易混詞總結(jié)
- 初中語文228條文學(xué)常識(shí)
- 初中語文作文素材:30組可以用古詩詞當(dāng)作文標(biāo)題
- 初中語文古代文化常識(shí)七大類別總結(jié)
- 初中語文作文素材:100個(gè)文藝韻味小短句
- 初中語文閱讀理解33套答題公式
- 初中語文228條文學(xué)常識(shí)總結(jié)