新型單軌起重機(jī)牽引系統(tǒng)液壓系統(tǒng)的設(shè)計與仿真外文文獻(xiàn)翻譯、中英文翻譯、外文翻譯
新型單軌起重機(jī)牽引系統(tǒng)液壓系統(tǒng)的設(shè)計與仿真外文文獻(xiàn)翻譯、中英文翻譯、外文翻譯,新型,單軌,起重機(jī),牽引,系統(tǒng),液壓,設(shè)計,仿真,外文,文獻(xiàn),翻譯,中英文
Design and Simulation for the Hydraulic System of a New-style Monorail Crane Traction System
Abstract
In order to meet the requirement of the underground cable checked, the hydraulic system of a new-style monorail crane traction system is introduced. The hydraulic system of the traction system was designed. The modeling and simulation for the hydraulic system was build, and the simulation results were analyzed subsequently. The research shows the system performance reaches the requirements. The simulation results are almost the same as the theoretical value, and the design scheme of the hydraulic system is feasible.
Keywords: monorail crane, traction system, hydraulic system, modeling and simulation
Introduction
The design of hydraulic system is the component of the whole system. The hydraulic system is to make the host achieve requirements under the cooperation or control of the hydraulic system. According to the requirement of the new traction system, a hydraulic system was designed; the modeling and simulation for the hydraulic system was build to analysis the hydraulic system performance
Calculation of hydraulic system design
Analysis of load and movement
Calculate work load. Work load is the name for traction 45KN. This is the dynamic friction, fluid power is provided by hydraulic motor。
Calculate inertial load
Calculate feeding speed. According to the requirements of the traction system designed, the feeding speed of the system is at 0.12 m/s [2] .
Protocol hydraulic system diagram
Choose basic hydraulic loop. The design of hydraulic system power is bigger, work load change tiny at work, the system mainly realizes transportation function and lowly demand for stability of system, so volume control loop has been chosen. That is the variable pump-quantitative motor speed regulation
The motor oil is mainly as traction wheel operation in the system work, when the system is stable, the hydraulic cylinder piston is in balance, and the flow is unchanged in a certain speed of 0.12m /s. This shows that system in operation is in high pressure and large flow. For improving the efficiency of the system and meeting the needs of the speed regulation, variable piston pump scheme is chosen as the main loop, and gear pump control is chosen for controlling the hydraulic fluid port
System Modeling and Simulation
Simulate for system under the AMESIM. Start AMESIM, enter into the Sketch pattern. In this pattern, the components in the standard library and optional library are used to set up a hydraulic system .As the figure shows:
1) Travel motor and its control parts 2-Pressure cylinder and its control parts 3-Braking cylinder
4-Simulation braking spring
Fig1 Hydraulic system under AMESIM environmen
After completing the system building, click Sub-model mode button to enter the Sub-model model, in this mode, use the preferred sub-model function of Premier Sub-model for each of the system components selecting sub-model.
After determining the sub-model, click the Parameter mode button to enter the Parameter model, at this time, AMESIM performs various inspections for the system and generate executable code, System compilation window gives the technical information, which illustrates with the correctness of the front modeling .
After setting parameters, click on the Simulation mode button into the operation mode, set operation parameters: running time is 50 seconds, click on the start button to complete the simulation
Analyze for simulation results. After completion of the above operation, a part of the resulting drawing is shown fig2 and fig3.
The two figures show, when motor output torque meets the requirement of 735Nm, the entrance pressure reaches 229.75bar after the system stability, that is 22.975MPa, in starting, entrance pressure reaches to 25MPa and starting torque can reach to 800Nm, the entrance pressure difference between this and the previous in the selection of motor is , this phenomenon is mainly caused by the result did not consider mechanical efficiency and volume efficiency of the oil motor in simulation. From the results of the motor entrance pressure simulation we can see, when starting motor, the system pressure has a very fast rise process, but that is still in setting range [5] .
Fig2 Curve of motor inlet pressure Fig3 Curve of Motor output torque
Through the model of the system simulation, we can easily see the motor needs back pressure under different conditions. Set the motor torque were 735Nm, 635Nm, 535Nm, 435Nm, the simulation curve is shown below.
Fig4 Curves of motor inlet pressure under different load
The simulation results show that pressure the system provided is different under different load requirements and the response time of the system is also different. But the maximum pressure is almost the same when the system starts. The results meet the theory and the fact.
Fig5 Pressure curve of hydraulic cylinder
From the pressure cylinder’s braking force curve can be seen, the braking force of the system can reach 28912N in the stability of the system, this complies with the design requirements and is almost the same as the theoretical value
Fig6 Displacement curve of Brake cylinder Fig7 Force curve Brake cylinder piston rod
The displacement curve of the brake cylinder in the figure 6 shows, the brake cylinder displacement becomes big with the pressure increasing in the beginning, and it is a straight line, when the piston rod reaches to the force balance, the displacement will not change, and the displacement is small, that meets the requirements of actual working condition. The force curve of the piston rod in the figure 7 shows, the pressure is big when system produces 45KN, but the force is still in the design range.
Conclusion
According to the requirements of traction system, the hydraulic system of a new-style monorail crane traction system is introduced. The hydraulic system of the traction system was designed, the modeling and simulation for the hydraulic system was build, and the simulation results were analyzed subsequently. The research shows the system performance reaches the requirements. The simulation results are almost the same as the theoretical value, and the design scheme of the hydraulic system is feasible
References
[1] Anon. Developments in monorail [J].Colliery guardian Redhill.1988, 236 (12):438-439.
[2] Evans R J, Mayer check W D, Salinas J L.SURFACE TESTING AND EVALUATION OF THE MONORAIL BRIDGE CONVEYOR SYSTEM. [J].COAL MINING.1987.
[3] Mlinar J R, Erdman A G. Flexible pipelines prevent pressure losses[J]. Engineering and Mining Journal. 2004, 205(8):10.
[4] Xiao L, Li A, Wang X. Research on soft rock or coal seam roadway monorail hanging technology[C]. Henan, China: IEEE Computer Society, 2010.
新型單軌起重機(jī)牽引系統(tǒng)液壓系統(tǒng)的設(shè)計與仿真
摘要
為了滿足對地下電纜的檢查要求,引入了新型單軌起重機(jī)牽引系統(tǒng)的液壓系統(tǒng)。 設(shè)計了牽引系統(tǒng)的液壓系統(tǒng)。 建立了液壓系統(tǒng)的建模與仿真,并對仿真結(jié)果進(jìn)行了分析。 研究表明系統(tǒng)性能達(dá)到要求。 仿真結(jié)果與理論值基本相同,液壓系統(tǒng)的設(shè)計方案是可行的。
關(guān)鍵詞:單軌起重機(jī);牽引系統(tǒng);液壓系統(tǒng);建模與仿真
簡介
液壓系統(tǒng)的設(shè)計是整個系統(tǒng)的組成部分。 液壓系統(tǒng)的作用是使主機(jī)在液壓系統(tǒng)的協(xié)作或控制下達(dá)到要求。 根據(jù)新牽引系統(tǒng)的要求,設(shè)計了液壓系統(tǒng)。 建立了液壓系統(tǒng)的建模與仿真,分析了液壓系統(tǒng)的性能。
1液壓系統(tǒng)設(shè)計計算
1.1荷載與運動分析
1.1.1計算工作負(fù)載。?工作負(fù)載是牽引式45kn的名稱。?這就是動態(tài)摩擦力,液壓馬達(dá)提供流體動力。
計算慣性負(fù)載:
1.1.2計算進(jìn)給速度。根據(jù)設(shè)計的牽引系統(tǒng)要求,系統(tǒng)進(jìn)給速度為0.12m/s[2]。
1.1.3協(xié)議液壓系統(tǒng)圖
1.1.4選擇基本液壓回路。液壓系統(tǒng)設(shè)計功率大,工作負(fù)載變化小,系統(tǒng)主要實現(xiàn)輸送功能,對系統(tǒng)穩(wěn)定性要求低,故選用容積控制回路。即變量泵定量電機(jī)調(diào)速
系統(tǒng)工作時,電機(jī)油主要作為牽引輪運行,當(dāng)系統(tǒng)穩(wěn)定時,液壓缸活塞處于平衡狀態(tài),流量在0.12m/s的一定速度下保持不變,說明運行中的系統(tǒng)處于高壓大流量狀態(tài)。
為了提高系統(tǒng)的效率,滿足調(diào)速的需要,選用變量柱塞泵方案作為主回路,采用齒輪泵控制來控制液壓油口。
2系統(tǒng)建模與仿真
2.1模擬系統(tǒng)下的系統(tǒng)。 開始AMESIM,進(jìn)入草圖模式。 在此模式下,采用標(biāo)準(zhǔn)庫和可選庫中的組件建立液壓系統(tǒng),圖中顯示:
1.行駛馬達(dá)及其控制部件 2.壓力缸及其控制部件 3.制動缸 4.模擬制動彈簧圖
圖1 AMESIM環(huán)境下的液壓系統(tǒng)
系統(tǒng)搭建完成后,點擊子模型模式按鈕,進(jìn)入子模型模式,在此模式下,對選擇子模型的每個系統(tǒng)組件使用Premier Sub model的首選子模型功能。
確定子模型后,點擊參數(shù)模式按鈕進(jìn)入?yún)?shù)模型,此時AMESIM對系統(tǒng)進(jìn)行各種檢查并生成可執(zhí)行代碼,系統(tǒng)編譯窗口給出技術(shù)信息,用前面建模的正確性來說明。
設(shè)定參數(shù)后,點擊模擬模式按鈕進(jìn)入操作模式,設(shè)定操作參數(shù):運行時間為50秒鐘,點擊啟動按鈕完成仿真。
分析模擬結(jié)果。完成上述操作后,生成的圖形的一部分如圖2和圖3所示。
這兩幅圖顯示,當(dāng)電機(jī)輸出轉(zhuǎn)矩達(dá)到735Nm要求時,系統(tǒng)穩(wěn)定后入口壓力達(dá)到229.75bar,即22.975MPa,在起動時,入口壓力達(dá)到25MPa,起動轉(zhuǎn)矩可達(dá)到800Nm,在電機(jī)的選擇上,此入口壓差與前一入口壓差為,造成這種現(xiàn)象的主要原因是仿真結(jié)果沒有考慮油馬達(dá)的機(jī)械效率和容積效率。從電機(jī)入口壓力的模擬結(jié)果可以看出,啟動電機(jī)時,系統(tǒng)壓力有一個很快的上升過程,但仍在設(shè)定范圍內(nèi)[5]。
圖2電機(jī)進(jìn)口壓力曲線圖 圖3電機(jī)輸出轉(zhuǎn)矩曲線
通過系統(tǒng)仿真模型,我們可以很容易地看到電機(jī)在不同工況下需要背壓。 電機(jī)轉(zhuǎn)矩設(shè)定為:735Nm、635Nm、535Nm、435Nm,仿真曲線如下。
圖4不同負(fù)載下電機(jī)進(jìn)口壓力曲線
仿真結(jié)果表明,在不同的負(fù)載要求下,系統(tǒng)提供的壓力不同,系統(tǒng)的響應(yīng)時間也不同。但系統(tǒng)啟動時,最大壓力幾乎相同。結(jié)果與理論和實際相符。
圖5 液壓缸壓力曲線
從壓力缸的制動力曲線可以看出,系統(tǒng)的制動力在系統(tǒng)的穩(wěn)定性上可以達(dá)到28912N,這符合設(shè)計要求,與理論值基本一致
從圖6中制動缸的位移曲線可以看出,制動缸的位移在開始時隨著壓力的增大而變大,并且是一條直線,當(dāng)活塞桿達(dá)到力平衡時,位移不會發(fā)生變化,位移很小,符合實際工況要求。圖7中活塞桿的受力曲線顯示,系統(tǒng)產(chǎn)生45KN時壓力較大,但受力仍在設(shè)計范圍內(nèi)。
圖6 制動缸位移曲線圖 圖7 制動缸活塞桿受力曲線
總結(jié)
根據(jù)牽引系統(tǒng)的要求,介紹了一種新型單軌起重機(jī)牽引系統(tǒng)的液壓系統(tǒng)。對牽引系統(tǒng)的液壓系統(tǒng)進(jìn)行了設(shè)計,對液壓系統(tǒng)進(jìn)行了建模和仿真,并對仿真結(jié)果進(jìn)行了分析。研究表明,系統(tǒng)性能達(dá)到要求。仿真結(jié)果與理論值基本一致,液壓系統(tǒng)的設(shè)計方案是可行的
參考文獻(xiàn)
[1]?Anon。 單軌鐵路的發(fā)展[J]?.Colliery Guardian Redhill.1988,236(12):438-439。
[2] Evans R J,Mayer check W D,Salinas J L.單軌橋輸送系統(tǒng)的表面測試和評估。煤礦開采.1987。
[3] Mlinar J R,Erdman?AG。柔性管道防止壓力損失。 工程與采礦雜志。?2004,205(8):10。
[4]肖麗,李安,王新。軟巖或煤層巷道單軌懸掛技術(shù)研究。 中國河南:IEEE計算機(jī)學(xué)會,2010年。
11
收藏