《數(shù)電第二節(jié)邏輯代數(shù)基礎(chǔ)》由會(huì)員分享,可在線閱讀,更多相關(guān)《數(shù)電第二節(jié)邏輯代數(shù)基礎(chǔ)(20頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、邏輯變量及基本邏輯運(yùn)算邏輯變量及基本邏輯運(yùn)算邏輯函數(shù)及其表示方法邏輯函數(shù)及其表示方法 邏輯代數(shù)的運(yùn)算公式和規(guī)則邏輯代數(shù)的運(yùn)算公式和規(guī)則(一)邏輯變量(一)邏輯變量 取值:邏輯取值:邏輯0 0、邏輯、邏輯1 1。邏輯。邏輯0 0和邏輯和邏輯1 1不代表不代表數(shù)數(shù)值值大小大小,僅表示相互矛盾、相互對(duì)立的,僅表示相互矛盾、相互對(duì)立的兩種邏輯狀兩種邏輯狀態(tài)態(tài)。(二)基本邏輯運(yùn)算(二)基本邏輯運(yùn)算邏輯與邏輯與 邏輯或邏輯或 邏輯非邏輯非 第二節(jié)第二節(jié) 邏輯代數(shù)基礎(chǔ)邏輯代數(shù)基礎(chǔ) 一、邏輯變量及基本邏輯運(yùn)算一、邏輯變量及基本邏輯運(yùn)算邏輯符號(hào)邏輯符號(hào)邏輯表達(dá)式邏輯表達(dá)式F = =A B = = AB與邏輯真值
2、表與邏輯真值表與邏輯關(guān)系表與邏輯關(guān)系表邏輯與邏輯與 開關(guān)開關(guān)A 開關(guān)開關(guān)B燈燈F斷 斷斷 合合 斷合 合滅滅滅亮ABF1 01 10 10 00010ABF 與邏輯運(yùn)算符,也有用與邏輯運(yùn)算符,也有用“ ”、“”、“”、“& &”表示。表示。第二節(jié)第二節(jié) 邏輯代數(shù)基礎(chǔ)邏輯代數(shù)基礎(chǔ) 只有決定某一事件的只有決定某一事件的所有條件所有條件全部全部都具備,這一事件才能發(fā)生。都具備,這一事件才能發(fā)生。UABF邏輯符號(hào)邏輯符號(hào)或邏輯真值表或邏輯真值表或邏輯關(guān)系表或邏輯關(guān)系表邏輯或邏輯或 開關(guān)開關(guān)A 開關(guān)開關(guān)B燈燈F斷 斷斷 合合 斷合 合亮亮亮滅ABF1 01 10 10 01110第二節(jié)第二節(jié) 邏輯代數(shù)基
3、礎(chǔ)邏輯代數(shù)基礎(chǔ) 決定某一事件的條件決定某一事件的條件有一個(gè)或有一個(gè)或一個(gè)以上一個(gè)以上具備,這一事件才能發(fā)生具備,這一事件才能發(fā)生。 邏輯表達(dá)式邏輯表達(dá)式F= A + BABFUFAB1 或邏輯運(yùn)算符,也有用或邏輯運(yùn)算符,也有用“”、“”表示。表示。非邏輯真值表非邏輯真值表非邏輯關(guān)系表非邏輯關(guān)系表邏輯非邏輯非 開關(guān)開關(guān)A 燈燈FAF第二節(jié)第二節(jié) 邏輯代數(shù)基礎(chǔ)邏輯代數(shù)基礎(chǔ) 當(dāng)決定某一事件的條件滿足時(shí),事當(dāng)決定某一事件的條件滿足時(shí),事件不發(fā)生;反之事件發(fā)生。件不發(fā)生;反之事件發(fā)生。邏輯表達(dá)式邏輯表達(dá)式 F = A “- -”非邏輯運(yùn)算符非邏輯運(yùn)算符UFAR斷 合亮滅1001邏輯符號(hào)邏輯符號(hào)AF1與非
4、邏輯運(yùn)算與非邏輯運(yùn)算F1=AB或非邏輯運(yùn)算或非邏輯運(yùn)算F2=A+B與或非邏輯運(yùn)算與或非邏輯運(yùn)算F3=AB+CD(三)復(fù)合邏輯運(yùn)算(三)復(fù)合邏輯運(yùn)算第二節(jié)第二節(jié) 邏輯代數(shù)基礎(chǔ)邏輯代數(shù)基礎(chǔ) ABF1 ABF21ABF3CD1 ABF1 01 10 10 01100邏輯表達(dá)式邏輯表達(dá)式F=A B=AB+AB ABF=1邏輯符號(hào)邏輯符號(hào)第二節(jié)第二節(jié) 邏輯代數(shù)基礎(chǔ)邏輯代數(shù)基礎(chǔ) 異或運(yùn)算異或運(yùn)算“ ”異或邏輯異或邏輯運(yùn)算符運(yùn)算符異或運(yùn)算特性異或運(yùn)算特性:1.具有因果互換關(guān)系具有因果互換關(guān)系,即等式兩邊的變量可以互相交換位置即等式兩邊的變量可以互相交換位置.2.當(dāng)多個(gè)變量作異或運(yùn)算時(shí),若變量中有奇數(shù)個(gè)當(dāng)多個(gè)
5、變量作異或運(yùn)算時(shí),若變量中有奇數(shù)個(gè)1,則運(yùn)算結(jié)果為,則運(yùn)算結(jié)果為1;若;若變量中有偶數(shù)個(gè)變量中有偶數(shù)個(gè)1,則運(yùn)算結(jié)果為,則運(yùn)算結(jié)果為0結(jié)果與變量中結(jié)果與變量中0的個(gè)數(shù)無關(guān)的個(gè)數(shù)無關(guān)邏輯表達(dá)式邏輯表達(dá)式F=A BABF1 01 10 10 00011 同或運(yùn)算同或運(yùn)算= A B“”同或邏輯同或邏輯運(yùn)算符運(yùn)算符ABF=1邏輯符號(hào)邏輯符號(hào)ABF=第二節(jié)第二節(jié) 邏輯代數(shù)基礎(chǔ)邏輯代數(shù)基礎(chǔ) (四)(四)正邏輯正邏輯與與負(fù)邏輯負(fù)邏輯(與門)(與門)(或門)(或門)第二節(jié)第二節(jié) 邏輯代數(shù)基礎(chǔ)邏輯代數(shù)基礎(chǔ) ABFVL VL VL電平關(guān)系電平關(guān)系VL VH VLVH VL VLVH VH VH正邏輯正邏輯ABF負(fù)
6、邏輯負(fù)邏輯ABF0 0 00 1 01 0 01 1 11 1 11 0 10 1 10 0 0VH :高電平 VL:低電平邏輯0:VH 邏輯1: VL邏輯1:VH 邏輯0: VL 高電平高電平VH用邏輯用邏輯0表示,表示,低電平低電平VL用邏輯用邏輯1表示。表示。 正、負(fù)邏輯間關(guān)系正、負(fù)邏輯間關(guān)系正或正或 = 負(fù)與負(fù)與正與正與 = 負(fù)或負(fù)或正與非正與非 = 負(fù)或非負(fù)或非正或非正或非 = 負(fù)與非負(fù)與非1邏輯符號(hào)等效邏輯符號(hào)等效 在一種邏輯符號(hào)的所有入、在一種邏輯符號(hào)的所有入、出端同時(shí)加上或者去掉小圈。出端同時(shí)加上或者去掉小圈。 原來的符號(hào)互換(與原來的符號(hào)互換(與或、或、同或同或異或異或) 高
7、電平高電平VH用邏輯用邏輯1表示,表示,低電平低電平VL用邏輯用邏輯0表示。表示。第二節(jié)第二節(jié) 邏輯代數(shù)基礎(chǔ)邏輯代數(shù)基礎(chǔ) 1 1正邏輯正邏輯正與正與正與非正與非正或正或正或非正或非1 1負(fù)邏輯負(fù)邏輯負(fù)與負(fù)與負(fù)與非負(fù)與非負(fù)或負(fù)或負(fù)或非負(fù)或非第二節(jié)第二節(jié) 邏輯代數(shù)基礎(chǔ)邏輯代數(shù)基礎(chǔ) 二、邏輯函數(shù)及其表示方法二、邏輯函數(shù)及其表示方法 用有限個(gè)與、或、非等用有限個(gè)與、或、非等邏輯運(yùn)算符邏輯運(yùn)算符,應(yīng)用邏輯關(guān)系,應(yīng)用邏輯關(guān)系將若干個(gè)將若干個(gè)邏輯變量邏輯變量A、B、C等連接起來,所得的表達(dá)式等連接起來,所得的表達(dá)式稱為稱為邏輯函數(shù)邏輯函數(shù)。F (A,B)=A+BF (A,B,C)=A+BC輸出變量輸出變量邏
8、輯函數(shù)的表示方法:邏輯函數(shù)的表示方法:邏輯圖邏輯圖邏輯表達(dá)式邏輯表達(dá)式 波形圖波形圖 真值表真值表 輸入變量輸入變量1011111101111101同意為邏輯同意為邏輯1,不同意為邏輯,不同意為邏輯0。表決通過為邏輯表決通過為邏輯1,不通過為邏輯不通過為邏輯0。例:例:三個(gè)人表決一件事情,結(jié)果按三個(gè)人表決一件事情,結(jié)果按“少數(shù)服從多數(shù)少數(shù)服從多數(shù)”的原則決定。試建立該問題的邏輯函數(shù)。的原則決定。試建立該問題的邏輯函數(shù)。ABCF00000100100010002.邏輯函數(shù)表達(dá)式邏輯函數(shù)表達(dá)式 找出函數(shù)值為找出函數(shù)值為1的項(xiàng)。的項(xiàng)。 每個(gè)函數(shù)值為每個(gè)函數(shù)值為1 1的輸入變量的輸入變量取值組合寫成一
9、個(gè)取值組合寫成一個(gè)乘積項(xiàng)。乘積項(xiàng)。 這些乘積項(xiàng)作這些乘積項(xiàng)作邏輯加。邏輯加。F= ABC+ABC+ABC +ABC 輸入變量取值為輸入變量取值為1 1用原變量用原變量表示表示; ;反之,則用反變量表示反之,則用反變量表示ABC、ABC、ABC 、ABC 。1011111010111111第二節(jié)第二節(jié) 邏輯代數(shù)基礎(chǔ)邏輯代數(shù)基礎(chǔ) 3.邏輯圖邏輯圖F= ABC+ABC+ABC +ABC乘積項(xiàng)乘積項(xiàng)用用與門與門實(shí)現(xiàn)實(shí)現(xiàn)和項(xiàng)和項(xiàng)用用或門或門實(shí)現(xiàn)實(shí)現(xiàn)4.波形圖波形圖ABF CAB CAB CAB C1ABCFt0t1t2t3t4 t5A+ 0=A A+ 1=1A 0=0 A 1=A A A=0 A+A=1
10、A A=A A+A=AA B = B A A + B = B + A (AB)C = A (BC) (A+B)+C = A+(B+C) A ( B+C ) = A B+ A C A+ B C =( A + B) (A+ C )0-1律律互補(bǔ)律互補(bǔ)律重疊律重疊律交換律交換律結(jié)合律結(jié)合律分配律分配律第二節(jié)第二節(jié) 邏輯代數(shù)基礎(chǔ)邏輯代數(shù)基礎(chǔ) 三、邏輯代數(shù)的運(yùn)算公式和規(guī)則三、邏輯代數(shù)的運(yùn)算公式和規(guī)則反演律反演律A B= A+B A+ B=AB還原律還原律 A= A吸收律吸收律A+A B=A A (A+B)=AA+ A B =A+B A (A+ B) =A B AB+ A C +BC= AB+ A C(A
11、+B)( A+ C )(B+C)= (A+B)(A +C)第二節(jié)第二節(jié) 邏輯代數(shù)基礎(chǔ)邏輯代數(shù)基礎(chǔ) 三、邏輯代數(shù)的運(yùn)算公式和規(guī)則三、邏輯代數(shù)的運(yùn)算公式和規(guī)則例:證明反演律例:證明反演律A B= A+B 和和 A+ B=ABA BA BAB A+ BA BA+B000110111110111010001000由真值表得由真值表得 第二節(jié)第二節(jié) 邏輯代數(shù)基礎(chǔ)邏輯代數(shù)基礎(chǔ) 證:證:利用真值表利用真值表A B= A+B , A+ B=AB1110111010001000 反演律又稱摩根定律,常反演律又稱摩根定律,常變形為變形為A B= A+B 和和 A+B=AB吸收律吸收律 AB+ A C +BC= A
12、B+ A C的推廣的推廣兩個(gè)乘積項(xiàng)分別包含同一因子的原變量和反變兩個(gè)乘積項(xiàng)分別包含同一因子的原變量和反變量,而兩項(xiàng)的剩余因子包含在第三個(gè)乘積項(xiàng)中量,而兩項(xiàng)的剩余因子包含在第三個(gè)乘積項(xiàng)中,則第三項(xiàng)是多余的。,則第三項(xiàng)是多余的。第二節(jié)第二節(jié) 邏輯代數(shù)基礎(chǔ)邏輯代數(shù)基礎(chǔ) AB+AC +BCDE= AB+ AC邏輯代數(shù)的運(yùn)算公式和規(guī)則邏輯代數(shù)的運(yùn)算公式和規(guī)則 三個(gè)基本運(yùn)算規(guī)則三個(gè)基本運(yùn)算規(guī)則 代入規(guī)則代入規(guī)則:任何含有某變量的等式,如果任何含有某變量的等式,如果等式等式中中所有出現(xiàn)此所有出現(xiàn)此變量變量的位置均代之以一個(gè)的位置均代之以一個(gè)邏輯函數(shù)式邏輯函數(shù)式,則此等式依然成立。,則此等式依然成立。例:例:
13、 A B= A+BBC替代替代B得得由此反演律能推廣到由此反演律能推廣到n個(gè)變量:個(gè)變量: n nAAA A AA2121利用反演律利用反演律 n nAAAA AA2121 ABC = A+BC= A+B+C基本運(yùn)算規(guī)則基本運(yùn)算規(guī)則 反演規(guī)則反演規(guī)則:對(duì)于任意一個(gè)邏輯函數(shù)式對(duì)于任意一個(gè)邏輯函數(shù)式F,做如下處理:做如下處理: 若把式中的運(yùn)算符若把式中的運(yùn)算符“”換成換成“+ +”, , “+ +” 換成換成“”; 常量常量“0 0”換成換成“1 1”,“1 1”換成換成“0 0”; 原原變量換成變量換成反反變量,變量,反反變量換成變量換成原原變量,變量,那么得到的那么得到的新函數(shù)式新函數(shù)式稱為原
14、函數(shù)式稱為原函數(shù)式F的的反函數(shù)式反函數(shù)式。例:例:F(A,B,C)CBAB )C A(BA 其反函數(shù)為其反函數(shù)為)CBA(BCA)BA(F 保持原函數(shù)的運(yùn)算次序保持原函數(shù)的運(yùn)算次序-先與后先與后或,必要時(shí)適當(dāng)?shù)丶尤肜ㄌ?hào)。或,必要時(shí)適當(dāng)?shù)丶尤肜ㄌ?hào)。基本運(yùn)算規(guī)則基本運(yùn)算規(guī)則 對(duì)偶式對(duì)偶式: 對(duì)于任意一個(gè)邏輯函數(shù),做如下處理:對(duì)于任意一個(gè)邏輯函數(shù),做如下處理:1)若把式中的運(yùn)算符)若把式中的運(yùn)算符“.”換成換成“+”,“+”換成換成“.”;2)常量)常量“0”換成換成“1”,“1”換成換成“0”。得到的新函數(shù)為原函數(shù)得到的新函數(shù)為原函數(shù)F的對(duì)偶式的對(duì)偶式F,也稱對(duì)偶函數(shù)。也稱對(duì)偶函數(shù)。 求對(duì)偶式時(shí)求
15、對(duì)偶式時(shí)運(yùn)算順序不變運(yùn)算順序不變,且它只,且它只變換運(yùn)變換運(yùn)算符和常量算符和常量,其,其變量是不變變量是不變的。的。注:注: 函數(shù)式中有函數(shù)式中有“ ”和和“”運(yùn)算符,求反運(yùn)算符,求反函數(shù)及對(duì)偶函數(shù)時(shí),要將運(yùn)算符函數(shù)及對(duì)偶函數(shù)時(shí),要將運(yùn)算符“ ”換成換成“”, “”換成換成“ ”。 其對(duì)偶式其對(duì)偶式例:例:FB1C ABA )( FB0C ABA ) ()(A+A B=A A (A+B)=AA+ A B =A+B A (A+ B) =A B 如果兩個(gè)函數(shù)式相等,則它們對(duì)應(yīng)的對(duì)偶式也相如果兩個(gè)函數(shù)式相等,則它們對(duì)應(yīng)的對(duì)偶式也相等。即等。即 若若F F1 1 = = F F2 2 則則F F1 1= = F F2 2。使公式的數(shù)目增使公式的數(shù)目增加一倍。加一倍。 對(duì)偶規(guī)則:對(duì)偶規(guī)則:A ( B+C ) = A B+ A C A+ B C =( A + B) (A+ C )基本運(yùn)算規(guī)則基本運(yùn)算規(guī)則AB+ A C +BC= AB+ A C(A+B)( A+ C )(B+C)= (A+B)(A +C)