3.5數(shù)列的綜合應用
《3.5數(shù)列的綜合應用》由會員分享,可在線閱讀,更多相關(guān)《3.5數(shù)列的綜合應用(33頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、3.5 3.5 數(shù)列的綜合應用數(shù)列的綜合應用1. 解答數(shù)列應用題的基本步驟(1)審題仔細閱讀材料,認真理解題意.(2)建模將已知條件翻譯成數(shù)學(數(shù)列)語言,將實際問題轉(zhuǎn)化成數(shù)學問題,弄清該數(shù)列的結(jié)構(gòu)和特征.(3)求解求出該問題的數(shù)學解.(4)還原將所求結(jié)果還原到原實際問題中.2. 數(shù)列應用題常見模型(1)等差模型:如果增加(或減少)的量是一個固定量時,該模型是等差模型,增加(或減少)的量就是公差.(2)等比模型:如果后一個量與前一個量的比是一個固定的數(shù)時,該模型是等比模型,這個固定的數(shù)就是公比.(3)分期付款模型:設(shè)貸款總額為a,年利率為r,等額還款數(shù)為b,分n期還完,則(1).(1)1nnr
2、rbar基礎(chǔ)自測基礎(chǔ)自測1.農(nóng)民收入由工資性收入和其他收入兩部分構(gòu)成.2003年該 地區(qū)農(nóng)民人均收入為3 150元(其中工資性收入為1 800元,其他收入為1 350元),預計該地區(qū)自2004年起的5年內(nèi)(包括2004年),農(nóng)民的工資性收入將以每年6%的年增長率增長,其他收入每年增加160元.根據(jù)以上數(shù)據(jù),2008年該地區(qū)農(nóng)民人均收入介于 ( )A.4 200元4 400元 B.4 400元4 600元C.4 600元4 800元 D.4 800元5 000元 解析解析 到2008年農(nóng)民的工資性收入變?yōu)? 800(1+6%)5 2 409(元), 其他收入變?yōu)? 350+5160=2 150(
3、元), 故2008年收入為4 559元.B B2. (2009廣西河池模擬)設(shè)f(n)=2+24+27+23n+1 (nN N*),則f(n)等于( )A. B. C. D. 解析解析 本題考查等比數(shù)列的前n項和公式等知識.由題意發(fā) 現(xiàn),f(n)是一個以2為首項,公比q=23=8,項數(shù)為n+1的等比 數(shù)列的和.由公式可得B2(81)7n12(81)7n22(81)7n32(81)7n111112(1 8)2( )(81).11 87nnnnqf nSq3. 若互不相等的實數(shù)a,b,c成等差數(shù)列,c,a,b成等比數(shù)列, 且a+3b+c=10,則a的值為 ( ) A.4 B.2 C.-2 D.-4
4、 解析解析 由互不相等的實數(shù)a,b,c成等差數(shù)列,可設(shè)a=b- d,c=b+d,由a+3b+c=10,可得b=2,所以a=2-d,c=2+d,又c,a,b 成等比數(shù)列可得(2-d)2=2(2+d),解得d=6或d=0(舍去), 所以a=-4.D4. 設(shè)等比數(shù)列an的公比為q,前n項和為Sn,若Sn+1,Sn,Sn+2成 等差數(shù)列,則公比 ( ) A.q=-2 B.q=1 C.q=-2或q=1 D.q=2或q=-1 解析解析 由題意可得2Sn=Sn+1+Sn+2,當q1時, 解之得q=-2或q=1,當q=1時不成立.A12111(1)(1)(1)2,111nnnaqaqaqqqq即2=q+q25
5、. (2009新鄭模擬新鄭模擬)某種細胞開始有2個,1小時后分裂成4 個并死去1個,2小時后分裂成6個并死去1個,3小時后分裂 成10個并死去1個,按此規(guī)律,6小時后細胞存活的個 數(shù)是 ( )A.63 B.65 C.67 D.71解析解析 方法一方法一 設(shè)n小時后細胞個數(shù)為an, 則a1=22-1=3,a2=23-1=5, a3=25-1=9,a4=29-1=17, a5=217-1=33,a6=233-1=65. 方法二方法二 設(shè)n小時后細胞個數(shù)為an, 則a1=3,an=2an-1-1 (n2), an-1=2(an-1-1). an-1是公比為2的等比數(shù)列,a1-1=2. an-1=22
6、n-1=2n,an=2n+1, a6=26+1=65.B 數(shù)列an的前n項和記為Sn,a1=1,an+1=2Sn+1 (n1).(1)求an的通項公式; (2)等差數(shù)列bn的各項為正,其前n項和為Tn,且 T3=15,又a1+b1,a2+b2,a3+b3成等比數(shù)列,求Tn. 【思維啟迪思維啟迪】(1)運用公式 (2)注意等差數(shù)列與等比數(shù)列之間的相互關(guān)系. 解解(1)由an+1=2Sn+1,可得an=2Sn-1+1 (n2),題型一題型一 等差數(shù)列與等比數(shù)列的綜合應用等差數(shù)列與等比數(shù)列的綜合應用,11nnnSSSan=1,n2.求an.兩式相減得an+1-an=2an,an+1=3an (n2)
7、.又a2=2S1+1=3,a2=3a1.故an是首項為1,公比為3的等比數(shù)列,an=3n-1.(2)設(shè)bn的公差為d,由T3=15,b1+b2+b3=15,可得b2=5,故可設(shè)b1=5-d,b3=5+d,又a1=1,a2=3,a3=9,由題意可得(5-d+1)(5+d+9)=(5+3)2,解得d1=2,d2=-10.等差數(shù)列bn的各項為正,d0,d=2,b1=3, 探究拓展探究拓展 本題重在考查等差數(shù)列、等比數(shù)列的通項公式與求前n項和的基礎(chǔ)知識和基本運算技能.222) 1(32nnnnnTn (12分)已知f(x)=logax(a0且a1),設(shè)f(a1),f(a2),f(an) (nN*)是首
8、項為4,公差為2的等差數(shù)列. (1)設(shè)a為常數(shù),求證:an成等比數(shù)列; (2)若bn=anf(an),bn的前n項和是Sn,當 時,求Sn.【思維啟迪思維啟迪】利用函數(shù)的有關(guān)知識得出an的表達式,再 利用表達式解決其他問題. (1)證明證明 f(an)=4+(n-1)2=2n+2, 即logaan=2n+2,2分 可得an=a2n+2. 為定值. 所以an 為等比數(shù)列. 題型二題型二 數(shù)列與函數(shù)的綜合數(shù)列與函數(shù)的綜合2a222222(1) 221(2)nnnnnnaaaanaaa(2)解解 bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2.當 時,bn=(2n+2)
9、=(n+1)2n+2.7分Sn=223+324+425+(n+1)2n+2 2Sn=224+325+426+n2n+2+(n+1)2n+3-得-Sn=223+24+25+2n+2-(n+1)2n+3=16+2n+3-24-n2n+3-2n+3=-n2n+3.Sn=n2n+3. 12分2a22)2(n3142) 1(21)21 (216nnn探究拓展探究拓展 數(shù)列與函數(shù)和綜合問題主要有以下兩類:已知函數(shù)條件,解決數(shù)列問題,此類問題一般利用函數(shù)的性質(zhì)、圖象研究數(shù)列問題;已知數(shù)列條件,解決函數(shù)問題,解決此類問題一般要充分利用數(shù)列的范圍、公式、求和方法對式子化簡變形. 假設(shè)某市2008年新建住房400
10、萬平方米,其中有250 萬平方米是中低價房,預計在今后的若干年內(nèi),該市每年新 建住房面積平均比上一年增長8%.另外每年新建住房中,中 低價房的面積均比上一年增加50萬平方米.那么,到哪一年 底, (1)該市歷年所建中低價房的累計面積(以2008年為累計的第一年)將首次不少于4 750萬平方米? (2)當年建造的中低價房的面積占該年建造住房面積的比 例首次大于85%?(參考數(shù)據(jù):1.0841.36,1.0851.47, 1.0861.59)題型三題型三 數(shù)列的實際應用數(shù)列的實際應用【思維啟迪思維啟迪】(1)要求學生會把實際問題轉(zhuǎn)化為數(shù)學問題:(2)an0.85bn,bn=4001.08n-1.解
11、解 (1)設(shè)中低價房的面積形成的數(shù)列為an,由題意可知an是等差數(shù)列,其中a1=250,d=50,則an=250+(n-1)50=50n+200令25n2+225n4 750,即n2+9n-1900,而n是正整數(shù),n10.到2017年底,該市歷年所建中低價房的累計面積將首次不少于4 750萬平方米.750422525502) 1(2502nnnnnSn2(1)25050250225 ,2nn nSnnn(2)設(shè)新建住房面積形成數(shù)列bn,由題意可知bn是等比數(shù)列,其中b1=400,q=1.08,則bn=400(1.08)n-1.由題意可知an0.85bn,即50n+200400(1.08)n-1
12、0.85.當n=5時,a50.85b6,滿足上述不等式的最小正整數(shù)n為6.到2013年底,當年建造的中低價房的面積占該年建造住房面積的比例首次大于85%.探究拓展探究拓展 解決此類問題的關(guān)鍵是如何把實際問題轉(zhuǎn)化為數(shù)學問題,通過反復讀題,列出有關(guān)信息,轉(zhuǎn)化為數(shù)列的有關(guān)問題,這也是數(shù)學實際應用的具體體現(xiàn).方法與技巧1.深刻理解等差(比)數(shù)列的性質(zhì),熟悉它們的推導過程是 解題的關(guān)鍵.兩類數(shù)列性質(zhì)既有類似的部分,又有區(qū)別,要 在應用中加強記憶.同時,用好性質(zhì)也會降底解題的運算 量,從而減小差錯.2.等比數(shù)列的前n項和公式要分兩種情況:公比等于1和公比不 等于1.最容易忽視公比等于1的情況,要注意這方面
13、的練習.3.在等差數(shù)列與等比數(shù)列中,經(jīng)常要根據(jù)條件列方程(組) 求解,在解方程組時,仔細體會兩種情形中解方程組的方 法的不同之處.4.數(shù)列的滲透力很強,它和函數(shù)、方程、三角形、不等式等 知識相互聯(lián)系,優(yōu)化組合,無形中加大了綜合的力度.解決 此類題目,必須對蘊藏在數(shù)列概念和方法中的數(shù)學思想有 所了解,深刻領(lǐng)悟它在解題中的重大作用,常用的數(shù)學思 想方法有:“函數(shù)與方程”、“數(shù)形結(jié)合”、“分類討 論”、“等價轉(zhuǎn)換”等.5.在現(xiàn)實生活中,人口的增長、產(chǎn)量的增加、成本的降低、 存貸款利息的計算、分期付款問題等,都可以利用數(shù)列來 解決,因此要會在實際問題中抽象出數(shù)學模型,并用它解 決實際問題.失誤與防范1
14、.數(shù)列的應用還包括實際問題,要學會建模,對應哪一類數(shù)列, 進而求解.2.在有些情況下,證明數(shù)列的不等式要用到放縮法.1.已知數(shù)列an、bn滿足:a1=2,b1=1,且 (1)令cn=an+bn,求數(shù)列cn的通項公式; (2)求數(shù)列an的通項公式及前n項和公式Sn. 解解(1)當n2時, cn=cn-1+2,即cn-cn-1=2 (n2) 數(shù)列cn為等差數(shù)列,首項c1=a1+b1=3,公差d=2. cn=3+(n-1)2=2n+11111311,44131.44nnnnnnaabbab) 141() 14143(1111nnnnnnnbababac, 211nnba1111311,44(2).1
15、3144nnnnnnaabnbab(2)當n時,-得:數(shù)列an-bn為等比數(shù)列,首項為a1-b1=1,公比 由(1)知:an+bn=2n+1,+得),2)(2111nbabannnn,21q.)21(1nnnba1)21() 12(2nnnannna21)21()212121()21()212()211 (2nnnS211)211 (2122)1 (nnnn.21122nnn-得:數(shù)列an-bn為等比數(shù)列,首項為a1-b1=1,公比 由(1)知:an+bn=2n+1,+得),2)(2111nbabannnn,21q.)21(1nnnba1)21() 12(2nnnannna21)21()212
16、121()21()212()211 (2nnnS211)211 (2122)1 (nnnn.21122nnn2.已知數(shù)列an滿足a1=2,且點(an,an+1)在函數(shù)f(x)=x2+2x 的圖象上,其中n=1,2,3,. (1)證明:數(shù)列l(wèi)g(1+an)是等比數(shù)列; (2)設(shè)Tn=(1+a1)(1+a2)(1+an),求Tn及數(shù)列an 的通項. (1)證明證明 由于(an,an+1)在函數(shù)f(x)的圖象上, an+1+1=(an+1)2. a1=2,an+11, lg(an+1+1)=2lg(an+1). 數(shù)列l(wèi)g(an+1)是公比為2的等比數(shù)列.,221nnnaaa(2)解解 由(1)知lg
17、(an+1)=2n-1lg(1+a1)Tn=(1+a1)(1+a2)(1+an).3lg3lg2121nn.3112nna012132223333n211 2 222133.nn . 13,31212nnaTn3.某國采用養(yǎng)老儲備金制度.公民在就業(yè)的第一年就交納養(yǎng)老 儲備金,數(shù)目為a1,以后每年交納的數(shù)目均比上一年增 加d(d0),因此,歷年所交納的儲備金數(shù)目a1,a2,是 一個公差為d的等差數(shù)列.與此同時,國家給予優(yōu)惠的計息 政策,不僅采用固定利率,而且計算復利.這就是說,如果 固定年利率為r(r0),那么,在第n年末,第一年所交納的 儲備金就變?yōu)閍1(1+r)n-1,第二年所交納的儲備金就
18、變?yōu)?a2(1+r)n-2,.以Tn表示到第n年末所累計的儲備金總額. (1)寫出Tn與Tn-1(n2)的遞推關(guān)系式; (2)求證:Tn=An+Bn,其中An是一個等比數(shù)列, Bn是一個等差數(shù)列.(1)解解 我們有Tn=Tn-1(1+r)+an(n2).(2)證明證明 T1=a1,對n2反復使用上述關(guān)系式,得Tn=Tn-1(1+r)+an=Tn-2(1+r)2+an-1(1+r)+an=a1(1+r)n-1+a2(1+r)n-2+an-1(1+r)+an.在式兩端同乘1+r,得(1+r)Tn=a1(1+r)n+a2(1+r)n-1+an-1(1+r)2+an(1+r).-,得rTn=a1(1+
19、r)n+d(1+r)n-1+(1+r)n-2+(1+r)-an即如果記則 Tn=An+Bn,其中An是以 為首項,以1+r(r0)為公比的等比數(shù)列;Bn是以 為首項, 為公差的等差數(shù)列.1(1)1(1),nnndrrarar .)1 (2121rdranrdrrdraTnn,)1 (2121nrdrdraBrrdraAnnn)1 (21rrdra12a rddrrrd1.B 2.B 3.C 4.D5.已知等比數(shù)列an的各項均為正數(shù),數(shù)列bn滿足bn=lnan,b3=18,b6=12,則數(shù)列bn前n項和的最大值等于 ( )A.126 B.130 C.132 D.134解析解析 an是各項不為0的
20、正項等比數(shù)列, bn=lnan是等差數(shù)列. 又b3=18,b6=12,b1=22,d=-2, (Sn)max=-112+2311=132. ,23)2(2) 1(222nnnnnSnC6.(2008衡水調(diào)研衡水調(diào)研)設(shè)y=f(x)是一次函數(shù),f(0)=1,且f(1),f(4),f(13)成等比數(shù)列,則f(2)+f(4)+f(2n)等于( )A.n(n+4)B.n(2n+3)C.2n(2n+3)D.2n(n+4) 解析解析 f(x)是一次函數(shù),且f(0)=1, 設(shè)f(x)=kx+1, f(1)=k+1,f(4)=4k+1,f(13)=13k+1. f(1),f(4),f(13)成等比數(shù)列, (4
21、k+1)2=(k+1)(13k+1),3k2=6k. k0,k=2,即f(x)=2x+1. f(2),f(4),f(6),f(2n)構(gòu)成以5為首 項,4為公差的等差數(shù)列.).32(2) 145()2()4()2(nnnnnfffB7.11 985 8.4 9019.設(shè)等差數(shù)列an的首項a1及公差d都為整數(shù),前n項和為Sn. (1)若a11=0,S14=98,求數(shù)列an的通項公式; (2)若a16,a110,S1477,求所有可能的數(shù)列an的通 項公式. 解解 (1)由S14=98,得2a1+13d=14,又a11=a1+10d=0. 解得 a1=20,d=-2,因此an的通項公式是 an=22
22、-2n,(n=1,2,3,) (2)由 得即解得 又dZ,故d=-1.10a112,a1Z,故a1=11或a1=12.所以,所有可能的數(shù)列an的通項公式是an=12-n和an=13-n,(n=1,2,3).14111770 ,6Saa601011132111adada122020211132111adada,131711d10.(1) (2)證明 由 知對任意正整數(shù)n,an都不是 的整數(shù)倍. 所以sinan0,從而bn=sinansinan+1sinan+20. 于是 612 nan612 nannnnnnnnnnnaaaaaabbsinsinsinsinsinsinsinsin3213211
23、(n=1,2,3,). 1sin)sin(nnaa,4165sin2sin6sin1b又 bn是以 為首項,-1為公比的等比數(shù)列.11.(1)an=2n (2)存在最大正整數(shù)k=5使 恒成 立.12.(2008大慶模擬大慶模擬)已知數(shù)列an的前n項和為Sn,且 a1=1,nan+1=(n+2)Sn (nN*). (1)求證:數(shù)列 為等比數(shù)列;(2)求數(shù)列an的通項公式及前n項和Sn;4) 1(1nnb4112kTnnSn(n=1,2,3,) (3)若數(shù)列bn滿足: (nN*),求數(shù)列bn的通項公式.(1)證明證明 將an+1=Sn+1-Sn代入已知nan+1=(n+2)Sn;整理得 (nN*)
24、.又由已知所以數(shù)列 是首項為1,公比為2的等比數(shù)列.(2)解解 由(1)的結(jié)論可得 Sn=n2n-1,當n2時,nSbnbbnnn1,2111nSnSnn211,S111nSn12,nnSnan=Sn-Sn-1=n2n-1-(n-1)2n-2=2n-2(n+1).由已知,a1=1,又當n=1時,2n-2(n+1)=1,an=(n+1)2n-2 (nN*).(3)解解 由 得由此式可得)(1*1NnnSbnbnnn,2111nnnnbnb,221321nnnnbnb,2121nnnnbnb,2232323bb把以上各等式相加得,2 2212.21bb.22221222332bnbnnn,212121,2111nnnbb(21)()2nnnbn*N返回
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年二年級數(shù)學上冊9總復習專題二圖形與幾何作業(yè)課件新人教版
- 2023年二年級數(shù)學上冊6表內(nèi)乘法二第4節(jié)9的乘法口訣作業(yè)課件新人教版
- 2023年二年級數(shù)學上冊4表內(nèi)乘法一22~6的乘法口訣第2節(jié)234的乘法口訣作業(yè)課件新人教版
- 2023年二年級數(shù)學上冊2100以內(nèi)的加法和減法二3連加連減和加減混合第4課時解決問題作業(yè)課件新人教版
- 2023年二年級數(shù)學上冊1長度單位單元復習提升作業(yè)課件新人教版
- 2023年三年級數(shù)學下冊第四單元綠色生態(tài)園__解決問題信息窗1用連乘連除兩步運算解決問題作業(yè)課件青島版六三制
- 2023年三年級數(shù)學下冊第六單元認識分數(shù)第4課時分一分二2作業(yè)課件北師大版
- 2023年三年級數(shù)學下冊第二單元長方形和正方形的面積第4課時長方形和正方形面積的計算1作業(yè)課件西師大版
- 2023年三年級數(shù)學下冊第三單元三位數(shù)除以一位數(shù)的除法第4課時筆算除法1作業(yè)課件西師大版
- 2023年三年級數(shù)學下冊第一單元除法練習二作業(yè)課件北師大版
- 2023年三年級數(shù)學下冊第一_五單元階段性綜合復習作業(yè)課件蘇教版
- 2023年三年級數(shù)學下冊第6單元年月日第1課時年月日1作業(yè)課件新人教版
- 2023年三年級數(shù)學下冊第4單元兩位數(shù)乘兩位數(shù)拓展提升四作業(yè)課件新人教版
- 2023年三年級數(shù)學下冊第4單元兩位數(shù)乘兩位數(shù)1口算乘法第2課時口算乘法2作業(yè)課件新人教版
- 2023年三年級數(shù)學下冊第2單元除數(shù)是一位數(shù)的除法2筆算除法第4課時商中間有0的除法作業(yè)課件新人教版