汽車(chē)倒泊防撞報(bào)警器的設(shè)計(jì)
《汽車(chē)倒泊防撞報(bào)警器的設(shè)計(jì)》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《汽車(chē)倒泊防撞報(bào)警器的設(shè)計(jì)(16頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、編號(hào) xx大學(xué)xx學(xué)院 畢業(yè)設(shè)計(jì)(論文) 相關(guān)資料 題目: 汽車(chē)倒泊防撞報(bào)警器的設(shè)計(jì) 系 專(zhuān)業(yè) 學(xué) 號(hào): 學(xué)生姓名: 指導(dǎo)教師: (職稱(chēng): ) (職稱(chēng): ) xxxx年x月xx日 目 錄 一、畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告 二、畢業(yè)設(shè)計(jì)(論文)外文資料翻譯及原文 三、學(xué)生“畢業(yè)論文(論文)計(jì)劃、進(jìn)度、檢查及落實(shí)表”
2、 四、實(shí)習(xí)鑒定表 xx大學(xué)xx學(xué)院 畢業(yè)設(shè)計(jì)(論文) 開(kāi)題報(bào)告 題目: 汽車(chē)倒泊防撞報(bào)警器的設(shè)計(jì) 系 專(zhuān)業(yè) 學(xué) 號(hào): 學(xué)生姓名: 指導(dǎo)教師: (職稱(chēng): ) (職稱(chēng): ) xxxx年x月xx日 課題來(lái)源 由于隨著科學(xué)技術(shù)和汽車(chē)工業(yè)的發(fā)展,許許多多的汽車(chē)安全裝置也得到大力的發(fā)展。汽車(chē)上面安裝防撞警報(bào)器能夠極大的方便司機(jī)的駕
3、駛,保障司機(jī)的安全,并且能在緊急情況下能自動(dòng)剎車(chē)防止汽車(chē)之間的相撞。隨著人們安全意識(shí)的提高,在汽車(chē)上安裝防撞倒泊警報(bào)器將必不可少。 科學(xué)依據(jù)(包括課題的科學(xué)意義;國(guó)內(nèi)外研究概況、水平和發(fā)展趨勢(shì);應(yīng)用前景等) 在當(dāng)今社會(huì),知識(shí)的實(shí)用性越來(lái)越得到重視。如何從海量的知識(shí)群中找出有用的知識(shí)并付諸實(shí)踐,這是很值得摸索的。 單片機(jī)的應(yīng)用日益普及,汽車(chē)的數(shù)量急劇增加,保障汽車(chē)駕駛?cè)藛T的安全也變得越來(lái)越重要了。目前在汽車(chē)警報(bào)器經(jīng)過(guò)20多年的發(fā)展 ,已經(jīng)歷了從開(kāi)始的由單片機(jī)的蜂鳴器到由頻率控制聲音的急促報(bào)警到進(jìn)一步的可視的智能化防撞報(bào)警系統(tǒng)。 汽車(chē)防撞裝置主要是通過(guò)車(chē)與障礙物之間的距離,車(chē)速信號(hào)的發(fā)射與
4、接收由信號(hào)控制系統(tǒng)既是利用單片機(jī)來(lái)控制車(chē)速。并發(fā)出不同頻率的報(bào)警信號(hào)。當(dāng)車(chē)速與車(chē)距距離進(jìn)入比較危險(xiǎn)的狀態(tài)時(shí),單片機(jī)自動(dòng)控制發(fā)出緊急制動(dòng)信號(hào)剎車(chē),以此來(lái)達(dá)到防撞的目的。 由上述可知,汽車(chē)與障礙物的距離只有在危險(xiǎn)距離狀態(tài)才有發(fā)生碰撞的可能,汽車(chē)防撞裝置系統(tǒng)的設(shè)計(jì)任務(wù)主要是采集汽車(chē)與障礙物的距離和本車(chē)車(chē)速,并與當(dāng)時(shí)車(chē)速下安全警報(bào)距離與危險(xiǎn)距離之間進(jìn)行比較,判斷汽車(chē)與障礙物的距離是否安全。當(dāng)達(dá)到的安全警報(bào)距離時(shí)能發(fā)出聲音報(bào)警。 研究?jī)?nèi)容 在倒車(chē)時(shí)不斷測(cè)量汽車(chē)尾部與其后面障礙物的距離,并實(shí)時(shí)顯示其與障礙物之間的距離,在不同的距離范圍內(nèi)發(fā)出不同的報(bào)警信號(hào),并且提高報(bào)警系統(tǒng)的穩(wěn)定性,以提高汽車(chē)倒車(chē)時(shí)的
5、安全性。本文設(shè)計(jì)了一種超聲波汽車(chē)倒泊防撞報(bào)警器,本報(bào)警器具有以下功能:最大測(cè)距4.9m,最小測(cè)距0.1m,實(shí)時(shí)顯示測(cè)得的距離;在不同的時(shí)間利用三個(gè)不同的超聲波傳感器進(jìn)行測(cè)距,能夠有效的提高報(bào)警的穩(wěn)定性。在不同的危險(xiǎn)距離范圍內(nèi)發(fā)出不同的頻率報(bào)警信號(hào),駕駛員還可以根據(jù)個(gè)人需要調(diào)整設(shè)置報(bào)警距離。利用555來(lái)控制蜂鳴器的發(fā)聲頻率,直接運(yùn)用單片機(jī)的I/O口控制報(bào)警器的工作。能夠大大降低軟件的復(fù)雜程度。該報(bào)警器與其它報(bào)警器相比具有功能多、硬件電路簡(jiǎn)單、工作穩(wěn)定可靠等優(yōu)點(diǎn)。 擬采取的研究方法、技術(shù)路線(xiàn)、實(shí)驗(yàn)方案及可行性分析 研究方法:理論聯(lián)系實(shí)際。 技術(shù)路線(xiàn):理論聯(lián)系實(shí)際。 實(shí)驗(yàn)方案:對(duì)比“
6、基于AT89C51單片機(jī)的超聲波防撞報(bào)警系統(tǒng)”跟“基于AT89C2051單片機(jī)的超聲波防撞報(bào)警系統(tǒng)”,前者性?xún)r(jià)比更高,所以選擇前者。 可行性分析:能夠理論聯(lián)系實(shí)際解決實(shí)際性的問(wèn)題。此方案可行。 研究計(jì)劃及預(yù)期成果 初步討論基于AT89C51單片機(jī)來(lái)實(shí)現(xiàn)汽車(chē)倒泊防撞警報(bào)器的設(shè)計(jì),分析了運(yùn)用AT89C51和AT89C2051作為主控制器的兩種方案。重點(diǎn)介紹了AT89C51來(lái)實(shí)現(xiàn)的方案。對(duì)控制器,超聲波發(fā)射電路,超聲波接收電路,高低頻報(bào)警電路,LED顯示電路等模塊,以及運(yùn)用單片機(jī)的I/O口如何具體的控制作了一定的說(shuō)明。第四部分中,介紹系統(tǒng)的硬件框圖、軟件流程圖、中斷子程序流圖等,給出了具體
7、的軟件實(shí)現(xiàn)的方案。利用51 系列單片機(jī)設(shè)計(jì)的測(cè)距儀便于操作、讀數(shù)直觀。測(cè)距儀工作穩(wěn)定, 能滿(mǎn)足一般近距離測(cè)距的要求, 且成本較低、有良好的性?xún)r(jià)比。 特色或創(chuàng)新之處 考慮非常周全,不但提供了相應(yīng)的理論基礎(chǔ)知識(shí),一定的電子電路圖,還為詳細(xì)的設(shè)計(jì)過(guò)程截取圖片 已具備的條件和尚需解決的問(wèn)題 對(duì)于AT89C51單片機(jī)來(lái)實(shí)現(xiàn)汽車(chē)的倒泊防撞警報(bào)器尚取得了一定進(jìn)展,但是還是有很多的不足之處: (1)應(yīng)該引入更加完善的顯示系統(tǒng),是司機(jī)能更加清楚的了解倒車(chē)時(shí)的情況。 (2)引入先進(jìn)的語(yǔ)音模塊,通過(guò)人性化的語(yǔ)音報(bào)警信號(hào)。 (3)在緊急情況,應(yīng)該自動(dòng)使汽車(chē)緊急剎車(chē),防止汽車(chē)與障礙物之間相撞。 (4)應(yīng)
8、該對(duì)該警報(bào)器進(jìn)行實(shí)際的測(cè)量,適當(dāng)?shù)倪M(jìn)行調(diào)節(jié),最大限度的減少誤差。 但是未來(lái)利用單片機(jī)來(lái)實(shí)現(xiàn)汽車(chē)的倒泊防撞警報(bào)器仍然有廣闊的前景,隨著單片機(jī)的功能日漸增強(qiáng),能夠使報(bào)警更加人性化 指導(dǎo)教師意見(jiàn) 指導(dǎo)教師簽名: 年 月 日 教研室(學(xué)科組、研究所)意見(jiàn) 教研室主任簽
9、名: 年 月 日 系意見(jiàn) 主管領(lǐng)導(dǎo)簽名: 年 月 日 外文原文 Microelectronic Engineering South KoreabSchool of Information and Communication Engine
10、ering, College of Engineering, Inha University, Incheon 402-751, South Korea cDepartment of Electrical Engineering, College of Engineering, Choongang University,Seoul 156-756, South Korea.Available online 17 February 2006. Abstract We report on the fabrication of a polymer-based 2.5Gbps4 channel
11、optical interconnecting micro-module for optical printed circuit board (O-PCB) application. An optical waveguide array is used for optical transmission from vertical surface emitting laser (VCSEL) array to photodiode (PD) array and the built-in 45 waveguide mirrors are used for vertical coupling. Th
12、e optical waveguide array and the 45 mirrors are fabricated by UV imprint process in one-step. We fabricate microlensed VCSELs by micro-inkjetting method, which reduced radiation angle of VCSEL from 18 to 15 for better light coupling. We use solder ball array and pin array for alignment between O-PC
13、B and the electrical sub-boards with alignment mismatch below 10μm in x, y and z axis. The fabricated optical interconnection module transmits data at the rate of 2.5Gbps per channel. Keywords: Optical interconnection; Photonic integrated circuit; Micro-fabrication; UV embossing Article Outline 1
14、. Introduction 2. Fabrication of waveguide array and 45 mirrors 3. Microlensed VCSEL 4. Passive alignment 5. Optical interconnect modules 6. Conclusion Acknowledgements References 1. Introduction In the progresses of microprocessor and the input-output (IO) devices, the need for high
15、er bandwidth is rapidly growing. High speed interconnects are demanding next generation IO interconnects of highly increased data capacity because today’s IO interconnects are suffering bottleneck in bandwidth at the IO interface. Many attempts to increase the IO interconnect bandwidth have emerged
16、[1]. These attempts to extend electrical interconnect in more bandwidth manner are hard to solve fundamental problems facing the limitation of electrical properties over gigabits per channel data capacity. Operation of electrical interconnect schemes in gigabit regime will meet bottlenecks related
17、to the properties of electrical interconnects, including material properties, skew, jitter, EMI, and power consumption. To improve the performances of electrical interconnects, many efforts in signal processing techniques such as pre-emphasis, equalization, multilevel signaling, and coding, determin
18、istic jitter are needed to keep the trace of the bandwidth progress [2], [3] and [4]. Optical interconnection has a potential as an alternative approach to solve these problems because optical interconnection has many advantages over electrical interconnection such as high frequency, high bandwidth
19、, light, immunity to EMI, low skew, low jitter, no need of ground line, easy for impedance matching. To realize an optical interconnection module for O-PCB application, various photonic devices like light sources, detector arrays, and waveguide arrays are needed. The waveguides are interconnected t
20、o light sources and photo-detectors in a multiple array. The 45 waveguide mirrors are used for interconnecting VCSEL array–waveguide array/waveguide array–PD array. Once the O-PCB is designed and fabricated it has to be put together with the existing electrical circuits such as driving circuits for
21、micro-lasers and micro-detectors. Hence, we need micro-fabrication techniques for realizing optical interconnection module. We carried out micro-fabrication for optical interconnection module, which include design and fabrication of waveguides, coupling schemes and passive alignment. For this, we f
22、ocus on the following issues: One is the concurrent fabrication of a waveguide array and 45 mirrors in one-step in order to reduce the number of processing steps for low-cost production and another is a method to improve coupling efficiency between VCSEL array–waveguide array/waveguide array–PD arra
23、y including the passive alignment method between the different parts of the optical interconnection module. This paper demonstrates a micro-fabrication of optical interconnection module to be used for the realization of optical printed circuit board (O-PCB) [7] and [8]. 2. Fabrication of waveguide
24、array and 45 mirrors To use polymers as materials of the waveguide, embossing technique is used because of its relatively easy fabrication process. We fabricated polymer waveguides by UV embossing, which also involves fabrication of mold and replica. UV curable polymers are used as materials of wav
25、eguides and silicon mold is used to form waveguide patterns. For vertical coupling between VCSEL array and waveguide array and between the waveguide array and the PD array, we have to utilize mirror face at each end of the waveguide. To achieve this process, waveguide mold equipped with 45 faces at
26、each end of the mold is needed to form the vertical coupling structure in a single fabrication step. We made a 12 channel silicon waveguides mold, which has 45 mirror face at the ends of each waveguide. The dimension of the waveguide is 50μm width and 50μm height and the waveguide layout pitch is 25
27、0μm and the length is 7cm. With this mold, we performed UV embossing to make embedded type waveguides. To fabricate a 12 channel silicon waveguides mold, we etched silicon substrate with KOH-saturated isopropanol solutions in two steps: First is to make a vertical coupling path for the waveguides a
28、nd the other is to make 45 slope for the fabrication of mirror faces. First, a metallic mask is patterned on the silicon substrate and the silicon is vertically etched with KOH to form a waveguide pattern. In the next step to form 45 slope, a thin film of SiO2 is grown on patterned waveguide. And ph
29、otoresist is patterned at the end of the each waveguide structure and the ends of the waveguides are etched with KOH-saturated isopropanol solution to form 45 slope. After the SiO2 is stripped, the process of fabricating silicon mold equipped with 45 mirror is completed. We fabricated 12 channel em
30、bedded waveguide array by UV embossing using the prefabricated silicon mold. Waveguide fabrication process is shown in Fig. 1. UV curable polymer, which is used as cladding layer with index as 1.45 at 850nm wavelength, is dropped in the hollow cavity of a transparent substrate such as PDMS template.
31、 After silicon mold is pressed on template the UV light is irradiated. Silicon mold is detached and metallic film is coated on the 45 slope at the end of the waveguide to enhance coupling efficiency. And then the core polymer is dropped and a flat substrate is covered and pressed onto the core mater
32、ial which is also UV curable polymer with refractive index of 1.47 at 850nm wavelength. The UV light is irradiated once again. After the upper and lower templates are detached, we can get a complete array of polymer waveguides with built-in 45 mirror face at each end of the waveguide. View Within
33、 Article 3. Microlensed VCSEL One of the approaches to collimate the light from VCSEL arrays to the waveguide is the use of microlenses [9] and [10]. This method offers an increase in coupling efficiency and alignment tolerance. The volume of a polymer drop to fabricate these lenses is approxima
34、tely a few tens of picoliters. We are able to control the size of the microlenses by controlling the amount of the polymer drops and by controlling the viscosity of the materials. UV curable polymer is used for inkjetting, of which the viscosity and the refractive index are 300cps and 1.51 at 850nm
35、wavelength. Shows one of the microlensed VCSEL array and microlensed VCSEL has a microlens formed by the inkjetting method on the aperture of VCSEL. Inkjetting of UV curable resin on the VCSEL, lens material is aligned automatically on the aperture of VCSEL. Shows a view of the system where the ou
36、tput power from the microlensed VCSEL arrays is measured for their divergence. The divergence angle of the laser light from the VCSEL is shown to become narrower by using microlenses by the collimating effect pf the light from VCSEL. Because of the microlens, the higher order modes from the VCSEL ar
37、e suppressed by the cavity effect [10]. The emitted output from the VCSEL cavity is reflected back by microlens layer and is focused on the VCSEL cavity. During this process, the divergence angle of the VCSEL is reduced. In this case, the divergence angle of the VCSEL decreased from 18 to 15 after f
38、orming microlens. We conducted simulation study about the coupling efficiency between VCSEL and the waveguide by using the ray tracing method. As the divergence angle of the VCSEL was put into the calculation, the coupling efficiency of the VCSEL with microlens was found to be 0.44dB is 0.96dB which
39、 were better than that of VCSEL without microlens as ?1.40dB. Here dimension of waveguide is 50μm width, 50μm height and 7cm length. Refractive indices of the core and the cladding are 1.47 and 1.45, respectively, at 850nm wavelength. The distance between the VCSEL and the waveguide is 100μm.
40、 View Within Article 4. Passive alignment Solder ball array and pin array are placed on the electrical sub-boards to bond the O-PCB and the electrical sub-boards with high precision. For precision alignment, solder ball array in diameter of 450μm are used to thermally attach to the chip
41、 module. The solder ball array can be used for vertically alignment between the main O-PCB and the sub-boards within a mismatch below 10μm. The size of the solder ball is 500μm on average with standard error of 5μm. Two types of pin arrays are used. One array with diameter of 1mm is for align
42、ment and the other with diameter of 200μm is for electrical interconnection. The 1mm pin array is used for lateral alignment between the main O-PCB and the sub-boards. Because of the impedance match, the pin array of the electrical interconnection is limited. Similar to solder ball array alignment t
43、olerance of the pin array, about 10μm, depends on variation of diameter of pin. The size of the pin is 1mm on average with standard error of 10μm. We conducted simulation study about the coupling efficiency between the VCSEL-waveguide pair and the waveguide-PD pair by ray tracing. With the variatio
44、n of misalignment of x, y, and z axis we calculated the coupling efficiencies. From the calculation we obtained the total coupling loss within 2.30dB for the worst case of having position errors as large as 10μm in the x–z axis and in the y axis, respectively. For example, when the position misalign
45、ment is 10μm in the x–z axis and in the y axis, the coupling loss between VCSEL-waveguide is 1.59dB and the coupling loss between VCSEL-waveguide is 0.71dB. From the previous results, one can achieve the alignment between solder ball array and pin array can be achieved for alignment between main O-P
46、CB and sub-boards with precision as about 10μm in x–z axis and in y axis, respectively. Here the dimension of the waveguide is 50μm width and 50μm height. The refractive indices of the core and the cladding are 1.47 and 1.45, respectively, at 850nm wavelength. The distance between the VCSEL and the
47、waveguide is 100μm in the y axis. View Within Article 5. Optical interconnect modules We demonstrated the use of optical interconnection module for the assembly of O-PCB having four 2.5Gbps channels. The optical interconnection module, which includes E/O (electrical/optical) conversion
48、unit, is attached to the O-PCB with solder ball. The solder ball bonding is designed to accomplish the alignment between the waveguide structure and the electric circuit with high precision. The O-PCB prototype consists of main body of O-PCB and two electrical sub-boards. The main O-PCB has embedded
49、 waveguide which is the medium of optical interconnection. The two sub-boards are used for electrical-to-optical (E/O) or optical-to-electrical (O/E) conversion. The VCSEL array and the PD array are bonded to interconnect the waveguide to the bottom of the sub-board. The driving circuits are placed
50、on the opposite side to VCSEL array and PD array. The power, ground and other electrical control signal are supplied through the pin grid. The main O-PCB is placed on the E-PCB within a rectangular area of 70mm10mm at the center of the E-PCB.The overall planar size of the O-PCB is 200mm80mm and thic
51、kness is 1mm. The UV embossed waveguide including the 45 mirror for vertical coupling is inserted into the E-PCB and is glues with UV-epoxy. The sub-boards including VCSEL array/PD array are designed and fabricated using conventional analysis of microstrip line. View Within Article We fi
52、nally evaluated the quality of the optical interconnection module. First, we tested the waveguide array with 45 mirror face. The total losses of the waveguide include the propagation loss, the coupling loss, the 45 mirror loss and the insertion loss. And an average total loss is 7.9dB for a waveguid
53、e of 7cm length and their variation is within 1dB. For the worst case, in 12 channel, the total loss was 8.9dB. To demonstrate the data transmission performance, we utilized aligned optical interconnection module .A 2.5Gbps psudo-random binary system (PRBS) pattern were put in to the VCSEL driver v
54、ia the pin grid and the electrical output signal of the module were connected to a wide-band oscilloscope. An eye pattern of 2.5Gbps transmission was clearly observed without any significant distortion. View Within Article 6. Conclusion We performed micro-fabrication for optical inter
55、connection module. The optical waveguide array is fabricated by UV imprint process. The 45 mirrors faces are fabricated as an integrated part of the silicon waveguide mold for low-cost one-step processing. We fabricated microlensed VCSELs by micro-inkjetting method and found a significant increase i
56、n the improvement of the coupling efficiency reaching 0.96dB. Use of solder ball array and pin array for the alignment between the O-PCB and the sub-boards could be achieved with a precision below 10μm in the x–y axis and in the z axis. This passive alignment is designed for coupling loss induced by
57、 of misalignment within 2.3dB in total. We designed and fabricated a 2.5Gbps4 channels optical interconnecting micro-module for optical printed circuit board (O-PCB) application. This optical interconnection module transmits data at the rate of 2.5Gbps per channel. This work has been supported by t
58、he Engineering Research Center Grant No. R11-2003-022 for OPERA (Optics and Photonics Elite Research Academy). 中文譯文 運(yùn)用于O-PCB的2.5Gbps x4通道的光學(xué)微模型裝置 光學(xué)和光子精英研究院(OPERA),仁川的仁荷大學(xué)是402-751,韓國(guó)學(xué)校信息與通訊工程,工程學(xué)院,仁荷大學(xué),仁川402-751韓國(guó)中央大學(xué)電氣工程系,首爾是156-756,韓國(guó)在2006年2月17日可以在線(xiàn)。 摘要 我們報(bào)告的聚合物制造的2.5Gbps的 4通道光學(xué)互連微型光學(xué)印
59、刷電路板模塊(O型PCB)的應(yīng)用程序,光波導(dǎo)陣列用于從垂直表面的光傳輸發(fā)射激光器(VCSEL)的光電二極管(PD)的陣列和內(nèi)置的45 波導(dǎo)鏡使用垂直耦合。光波導(dǎo)陣列和45 鏡紫外壓印是工藝制造的一步,。我們通過(guò)微連接方法制造的微型VCSEL方法,VCSEL的角度從輻射18 減少到輻射15 是為了更好的光耦合。我們使用焊球陣列和針在O印刷電路板上并且電氣板對(duì)齊低于10微米的X,Y,Z軸配板。虛構(gòu)的光互連傳輸模塊在2.5Gbps速率下每通道的數(shù)據(jù)。 關(guān)鍵詞:光互連;光子集成電路,微加工,紫外壓印 大綱 1、導(dǎo)言 2、波導(dǎo)陣列的制備和45 鏡 3、顯微鏡的VCSEL 4、被動(dòng)對(duì)準(zhǔn) 5
60、、光互連模塊 6、結(jié)論 相關(guān)內(nèi)容 1.導(dǎo)言 在隨著微處理器和輸入輸出(I/O)的設(shè)備進(jìn)步,對(duì)高帶寬的需求也迅速增長(zhǎng)。高速互連所要求的新一代高的IO數(shù)據(jù)容量增加互連,因?yàn)榻裉斓腎O互連遭受帶寬瓶頸的是在IO接口。許多人試圖增加互連帶寬的IO出現(xiàn)在[1]。這些嘗試擴(kuò)大更多的電氣互連帶寬的方式是難以解決的根本問(wèn)題是對(duì)所面臨的每通道的數(shù)據(jù)的能力吉電性能的限制。 電氣互連千兆制度計(jì)劃的實(shí)行將滿(mǎn)足相關(guān)的電互連特性瓶頸,包括物質(zhì)的性質(zhì),歪斜,抖動(dòng),EMI和電消耗。為了提高電互連的特性,有許多在信號(hào)處理技術(shù)上的努力,如預(yù)加重,均衡,多層次的信號(hào)和編碼,確定性抖動(dòng)需要保持帶寬方面的進(jìn)展跟蹤,[2],
61、[3]和[4 ]。光學(xué)互連作為一種替代辦法來(lái)解決這些問(wèn)題的潛力,光互連比電氣互連擁有很多優(yōu)勢(shì),如高頻率,高帶寬,重量輕,對(duì)EMI的免疫,低歪曲率,低抖動(dòng),不需要地線(xiàn),便于阻抗匹配等。 2、波導(dǎo)陣列的制備和45 鏡 為了實(shí)現(xiàn)光互連模在O-印刷電路板的應(yīng)用,各種光子器件像光源,探測(cè)器陣列和波導(dǎo)陣列是需要的。波導(dǎo)對(duì)于光源和多矩陣探測(cè)器照片都是相互關(guān)聯(lián)的。45 波導(dǎo)鏡用于互聯(lián)VCSEL陣列波導(dǎo)陣列/波導(dǎo)陣列/光探測(cè)器陣列。一旦O印刷電路板被設(shè)計(jì)和制作,它必須和現(xiàn)有的電力線(xiàn)路一起,如駕駛微型激光器和微型探測(cè)器電路。因此我們需要實(shí)現(xiàn)光互連模塊的微加工技術(shù)。 我們進(jìn)行了微型光互連模塊制造,其中包括
62、設(shè)計(jì)和制造的波導(dǎo),耦合模式和被動(dòng)的調(diào)整。為此我們著眼于以下問(wèn)題:一個(gè)是波導(dǎo)陣列并行制造和45 鏡,減少加工步驟、低成本生產(chǎn)。另一種是一種方法,以改善VCSEL陣列之間的耦合效率波導(dǎo)陣列/波導(dǎo)陣列光探測(cè)器陣列,包括之間的光互連模塊的不同部分被動(dòng)調(diào)整的方法。本文演示了光互連微加工單元,用于印刷電路板的光學(xué)實(shí)現(xiàn)使用(O型印刷電路板)[7]和[8]。 要使用作為波導(dǎo)材料的聚合物,壓花技術(shù)被使用是因?yàn)樗闹圃旃に囅鄬?duì)簡(jiǎn)單。我們是制造紫外壓印聚合物光波導(dǎo),涉及模具制造和副本。紫外光固化聚合物用作波導(dǎo)和硅模具材料是用于形成波導(dǎo)模式。之間的VCSEL陣列和波導(dǎo)陣列和縱向耦合波導(dǎo)之間的數(shù)組和局部放電陣列,我們
63、不得不利用每個(gè)波導(dǎo)鏡面的尾部。為了實(shí)現(xiàn)這一過(guò)程,波導(dǎo)45 模具裝備是面臨形成所必需的一個(gè)步驟,制造垂直耦合結(jié)構(gòu)是在每個(gè)模具底部。我們提出了12頻道硅波導(dǎo)模具,它在波導(dǎo)兩端各有45 鏡面。波導(dǎo)的尺寸為50微米寬,50微米的高度和波導(dǎo)布局間距為250微米,長(zhǎng)度為7厘米。有了這個(gè)模具,我們進(jìn)行紫外壓印使嵌入式波導(dǎo)。編造一個(gè)12通道硅波導(dǎo)模,我們用KOH蝕刻硅襯底飽和異丙醇兩個(gè)步驟解決方案:首先是彌補(bǔ)波導(dǎo)垂直耦合路徑,另一個(gè)是為彌補(bǔ)制造45 坡度的鏡面。首先,金屬面具圖案的硅襯底上,硅是用KOH垂直蝕刻形成波導(dǎo)金屬面具圖案的硅基底上。下一步形成45度的斜坡,SiO2薄膜圖案在波導(dǎo)方式上增長(zhǎng)。圖案被波導(dǎo)
64、結(jié)構(gòu)仿造和在波導(dǎo)的兩端被蝕刻用KOH -異丙醇溶液飽和,形成45度的斜坡。二氧化硅被剝離后,硅的模具制造45 鏡配備進(jìn)程完成。 我們用紫外壓花預(yù)制磨具硅制造12路嵌入式紫外波導(dǎo)陣列。波導(dǎo)制造過(guò)程如圖 1。紫外光固化聚合物,這是作為包層的指數(shù),為1.45波長(zhǎng)850納米層,是在一個(gè)透明的基板空洞腔下降,例如硅橡膠模板。在硅片上按下模具模板的紫外線(xiàn)燈照射。模具硅和金屬膜分離是在45度斜坡,提高了耦合效率。然后核心聚合物下降,一個(gè)平面基板上覆蓋和芯材。紫外線(xiàn)與固化聚合物折射率1.47在波長(zhǎng)為850 nm。在紫外燈照射一次,經(jīng)過(guò)上下模板分離,我們可以在45 鏡面的內(nèi)置聚合物光波導(dǎo)完成數(shù)組在每個(gè)波導(dǎo)結(jié)束
65、。 3、Microlensed VCSEL 方法之一瞄準(zhǔn)從VCSEL陣列光的波導(dǎo)使用的微透鏡,是[9]和[10]。這種方法提供了一個(gè)在耦合效率和一致性公差調(diào)整。在聚合物滴體積編造這些鏡頭是大約數(shù)萬(wàn)不等。我們能夠控制通過(guò)控制聚合物的下降數(shù)額和通過(guò)控制材料粘度大小的微型鏡頭。紫外光固化聚合物用于inkjetting,其粘度和折射率是在850納米300 CPS和1.51波長(zhǎng)。所示之一microlensed VCSEL陣列和microlensed的VCSEL具有由對(duì)VCSE孔徑inkjetting方法形成了微透鏡。紫外光固化樹(shù)脂Inkjetting上的VCSEL,鏡片材料是一致的自動(dòng)光圈的VCS
66、EL。其中從microlensed VCSEL陣列輸出功率來(lái)衡量他們的分歧。在從的VCSEL激光發(fā)散角顯示成為使用的影響,從狹義的VCSEL光透鏡。由于透鏡,從VCSEL高階模式鎮(zhèn)壓腔效應(yīng)(10)。從排放的VCSEL腔輸出反射回來(lái)的微透鏡層是根據(jù)的VCSEL腔。在此過(guò)程中,發(fā)散角的VCSEL減少。在這種情況下,在下降的VCSEL發(fā)散角從18 到15 后形成微透鏡。我們進(jìn)行模擬對(duì)耦合效率之間的VCSEL研究,通過(guò)使用射線(xiàn)跟蹤法波導(dǎo)。作為發(fā)散角的VCSEL投入了計(jì)算,在與微透鏡的VCSEL耦合效率被發(fā)現(xiàn)0.44分貝是0.96分貝。其中優(yōu)于的VCSEL,沒(méi)有為-1.40分貝微透鏡。這里的波導(dǎo)尺寸為50微米寬,50微米高,長(zhǎng)7厘米。折射率核心和包層的1.47和1.45,分別在波長(zhǎng)為850 nm。之間的VCSEL和波導(dǎo)的距離為100微 4。被動(dòng)對(duì)準(zhǔn) 焊料球陣列和針陣列放置在以結(jié)合的
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024《增值稅法》全文學(xué)習(xí)解讀(規(guī)范增值稅的征收和繳納保護(hù)納稅人的合法權(quán)益)
- 2024《文物保護(hù)法》全文解讀學(xué)習(xí)(加強(qiáng)對(duì)文物的保護(hù)促進(jìn)科學(xué)研究工作)
- 銷(xiāo)售技巧培訓(xùn)課件:接近客戶(hù)的套路總結(jié)
- 20種成交的銷(xiāo)售話(huà)術(shù)和技巧
- 銷(xiāo)售技巧:接近客戶(hù)的8種套路
- 銷(xiāo)售套路總結(jié)
- 房產(chǎn)銷(xiāo)售中的常見(jiàn)問(wèn)題及解決方法
- 銷(xiāo)售技巧:值得默念的成交話(huà)術(shù)
- 銷(xiāo)售資料:讓人舒服的35種說(shuō)話(huà)方式
- 汽車(chē)銷(xiāo)售績(jī)效管理規(guī)范
- 銷(xiāo)售技巧培訓(xùn)課件:絕對(duì)成交的銷(xiāo)售話(huà)術(shù)
- 頂尖銷(xiāo)售技巧總結(jié)
- 銷(xiāo)售技巧:電話(huà)營(yíng)銷(xiāo)十大定律
- 銷(xiāo)售逼單最好的二十三種技巧
- 銷(xiāo)售最常遇到的10大麻煩