《高中數(shù)學(xué) 課時(shí)分層作業(yè)13 三角函數(shù)模型的簡(jiǎn)單應(yīng)用 新人教A版必修4》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 課時(shí)分層作業(yè)13 三角函數(shù)模型的簡(jiǎn)單應(yīng)用 新人教A版必修4(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
課時(shí)分層作業(yè)(十三) 三角函數(shù)模型的簡(jiǎn)單應(yīng)用
(建議用時(shí):40分鐘)
[學(xué)業(yè)達(dá)標(biāo)練]
一、選擇題
1.如圖166,單擺從某點(diǎn)開(kāi)始來(lái)回?cái)[動(dòng),離開(kāi)平衡位置O的距離s(cm)和時(shí)間t(s)的函數(shù)關(guān)系式為s=6sin,那么單擺擺動(dòng)一個(gè)周期所需的時(shí)間為
( )
圖166
A.2π s B.π s
C.0.5 s D.1 s
D [依題意是求函數(shù)s=6sin的周期,T==1,故選D.]
2.函數(shù)f(x)的部分圖象如圖167所示,則下列選項(xiàng)正確的是( )
【導(dǎo)學(xué)號(hào):84352132】
圖167
A.f(x)=x+sin x
B.f(x)=
C.f(x)=x
2、cos x
D.f(x)=x
C [觀察圖象知函數(shù)為奇函數(shù),排除D項(xiàng);又函數(shù)在x=0處有意義,排除B項(xiàng);取x=,f=0,A項(xiàng)不合適,故選C.]
3.下表是某市近30年來(lái)月平均氣溫(℃)的數(shù)據(jù)統(tǒng)計(jì)表:
月份
1
2
3
4
5
6
7
8
9
10
11
12
平均
溫度
-5.9
-3.3
2.2
9.3
15.1
20.3
22.8
22.2
18.2
11.9
4.3
-2.4
則適合這組數(shù)據(jù)的函數(shù)模型是( )
A.y=acos
B.y=acos+k(a>0,k>0)
C.y=-acos+k(a>0,k>0)
D.y=
3、acos-3
C [當(dāng)x=1時(shí)圖象處于最低點(diǎn),且易知a=>0.故選C.]
4.如圖168,為一半徑為3 m的水輪,水輪圓心O距離水面2 m,已知水輪自點(diǎn)A開(kāi)始1 min旋轉(zhuǎn)4圈,水輪上的點(diǎn)P到水面距離y(m)與時(shí)間x(s)滿足函數(shù)關(guān)系y=Asin(ωx+φ)+2,則有( )
【導(dǎo)學(xué)號(hào):84352133】
圖168
A.ω=,A=3 B.ω=,A=3
C.ω=,A=5 D.ω=,A=5
A [由題目可知最大值為5,∴5=A1+2?A=3.
T=15,則ω=.故選A.]
5.如圖169是函數(shù)y=sin x(0≤x≤π)的圖象,A(x,y)是圖象上任意一點(diǎn),過(guò)點(diǎn)A作x軸
4、的平行線,交其圖象于另一點(diǎn)B(A,B可重合).設(shè)線段AB的長(zhǎng)為f(x),則函數(shù)f(x)的圖象是( )
圖169
A [當(dāng)x∈時(shí),f(x)=π-2x;當(dāng)x∈時(shí),f(x)=2x-π,故選A.]
二、填空題
6.某城市一年中12個(gè)月的平均氣溫與月份的關(guān)系可近似地用三角函數(shù)y=a+Acos(x=1,2,3,…,12)來(lái)表示,已知6月份的月平均氣溫最高,為28 ℃,12月份的月平均氣溫最低,為18 ℃,則10月份的平均氣溫值為_(kāi)______℃.
【導(dǎo)學(xué)號(hào):84352134】
20.5 [由題意可知A==5,a==23.從而y=5cos+23.故10月份的平均氣溫值為y=5cos+
5、23=20.5.]
7.如圖1610是彈簧振子做簡(jiǎn)諧振動(dòng)的圖象,橫軸表示振動(dòng)的時(shí)間,縱軸表示振動(dòng)的位移,則這個(gè)振子振動(dòng)的函數(shù)解析式是________.
圖1610
y=2sin [由題圖可設(shè)y=Asin(ωt+φ),則A=2,
又T=2(0.5-0.1)=0.8,
所以ω==π,
所以y=2sin,
將點(diǎn)(0.1,2)代入y=2sin中,
得sin=1,
所以φ+=2kπ+,k∈Z,
即φ=2kπ+,k∈Z,
令k=0,得φ=,
所以y=2sin.]
8.一種波的波形為函數(shù)y=-sinx的圖象,若其在區(qū)間[0,t]上至少有2個(gè)波峰(圖象的最高點(diǎn)),則正整數(shù)t的
6、最小值是________.
7 [函數(shù)y=-sinx的周期T=4.且x=3時(shí)y=1取得最大值,因此t≥7.所以正整數(shù)t的最小值是7.]
三、解答題
9.已知某地一天從4時(shí)到16時(shí)的溫度變化曲線近似滿足函數(shù)y=10sin+20,x∈[4,16].
(1)求該地區(qū)這一段時(shí)間內(nèi)溫度的最大溫差;
(2)若有一種細(xì)菌在15 ℃到25 ℃之間可以生存,那么在這段時(shí)間內(nèi),該細(xì)菌能生存多長(zhǎng)時(shí)間?
【導(dǎo)學(xué)號(hào):84352135】
[解] (1)由函數(shù)易知,當(dāng)x=14時(shí)函數(shù)取最大值,即最高溫度為30 ℃;當(dāng)x=6時(shí)函數(shù)取最小值,即最低溫度為10 ℃.所以,最大溫差為30 ℃-10 ℃=20 ℃.
7、(2)令10sin+20=15,
可得sin=-.
而x∈[4,16],所以x=.
令10sin+20=25,
可得sin=,而x∈[4,16],
所以x=.故該細(xì)菌的存活時(shí)間為-=小時(shí).
10.如圖1611所示,摩天輪的半徑為40 m,O點(diǎn)距地面的高度為50 m,摩天輪作勻速轉(zhuǎn)動(dòng),每2 min轉(zhuǎn)一圈,摩天輪上點(diǎn)P的起始位置在最高點(diǎn).
圖1611
(1)試確定在時(shí)刻tmin時(shí)P點(diǎn)距離地面的高度;
(2)在摩天輪轉(zhuǎn)動(dòng)一圈內(nèi),有多長(zhǎng)時(shí)間P點(diǎn)距離地面超過(guò)70 m.
【導(dǎo)學(xué)號(hào):84352136】
[解] 建立如圖所示的平面直角坐標(biāo)系
(1)設(shè)φ(0≤φ≤2π)是以O(shè)x為始
8、邊,OP0為終邊的角,OP在tmin內(nèi)轉(zhuǎn)過(guò)的角為t,即πt∴以O(shè)x為始邊,OP為終邊的角為(πt+φ),即P點(diǎn)縱坐標(biāo)為40sin(πt+φ),
∴P點(diǎn)距地面的高度為z=50+40sin(πt+φ),(0≤φ≤2π),
由題可知,φ=,∴z=50+40sin=50+40cosπt.
(2)當(dāng)50+40cosπt≥70時(shí),解之得,2k-≤t≤2k+,持續(xù)時(shí)間為min.
即在摩天輪轉(zhuǎn)動(dòng)一圈內(nèi),有minP點(diǎn)距離地面超過(guò)70 m.
[沖A挑戰(zhàn)練]
1.車(chē)流量被定義為單位時(shí)間內(nèi)通過(guò)十字路口的車(chē)輛數(shù),單位為輛/分,上班高峰期某十字路口的車(chē)流量由函數(shù)F(t)=50+4sin(0≤t≤20)給出,F(xiàn)
9、(t)的單位是輛/分,t的單位是分,則下列哪個(gè)時(shí)間段內(nèi)車(chē)流量是增加的( )
A.[0,5] B.[5,10]
C.[10,15] D.[15,20]
C [當(dāng)10≤t≤15時(shí),有π<5≤≤<π,此時(shí)F(t)=50+4sin是增函數(shù),即車(chē)流量在增加.故應(yīng)選C.]
2.如圖1612,設(shè)點(diǎn)A是單位圓上的一定點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā)在圓上按逆時(shí)針?lè)较蛐D(zhuǎn)一周,點(diǎn)P所旋轉(zhuǎn)過(guò)的弧的長(zhǎng)為l,弦AP的長(zhǎng)為d,則函數(shù)d=f(l)的圖象大致是( )
圖1612
A B C D
C [令A(yù)P所對(duì)圓心角為θ,由|OA|=1,得l=θ,sin=,∴d=2sin=2sin,
10、即d=f(l)=2sin(0≤l≤2π),它的圖象為C.]
3.國(guó)際油價(jià)在某一時(shí)間內(nèi)呈現(xiàn)正弦波動(dòng)規(guī)律:P=Asin+60(美元)(t(天),A>0,ω>0),現(xiàn)采集到下列信息:最高油價(jià)80美元,當(dāng)t=150(天)時(shí)達(dá)到最低油價(jià),則ω的最小值為_(kāi)_______.
【導(dǎo)學(xué)號(hào):84352137】
[因?yàn)锳sin+60=80,
sin≤1,
所以A=20,當(dāng)t=150(天)時(shí)達(dá)到最低油價(jià),
即sin=-1,
此時(shí)150ωπ+=2kπ-,k∈Z,
因?yàn)棣兀?,所以當(dāng)k=1時(shí),ω取最小值,
所以150ωπ+=π,解得ω=.]
4.已知角φ的終邊經(jīng)過(guò)點(diǎn)P(1,-1),點(diǎn)A(x1,y1
11、),B(x2,y2)是函數(shù)f(x)=sin(ωx+φ)(ω>0)圖象上的任意兩點(diǎn),若|f(x1)-f(x2)|=2時(shí),|x1-x2|的最小值為,則f=________.
- [由條件|f(x1)-f(x2)|=2時(shí),|x1-x2|的最小值為,結(jié)合圖象(略)可知函數(shù)f(x)的最小正周期為,則由T==,得ω=3.又因?yàn)榻铅盏慕K邊經(jīng)過(guò)點(diǎn)P(1,-1),所以不妨取φ=-,則f(x)=sin,于是f=sin=-.]
5.心臟跳動(dòng)時(shí),血壓在增加或減少.血壓的最大值、最小值分別稱為收縮壓和舒張壓,血壓計(jì)上的讀數(shù)就是收縮壓和舒張壓,讀數(shù)120/80 mmHg為標(biāo)準(zhǔn)值.設(shè)某人的血壓滿足函數(shù)式p(t)=115
12、+25sin 160πt,其中p(t)為血壓(mmHg),t為時(shí)間(min),試回答下列問(wèn)題:
(1)求函數(shù)p(t)的周期;
(2)求此人每分鐘心跳的次數(shù);
(3)畫(huà)出函數(shù)p(t)的草圖;
(4)求出此人的血壓在血壓計(jì)上的讀數(shù).
【導(dǎo)學(xué)號(hào):84352138】
[解] (1)由于ω=160π,代入周期公式T=,可得T==(min),所以函數(shù)p(t)的周期為 min.
(2)每分鐘心跳的次數(shù)即為函數(shù)的頻率f==80(次).
(3)列表:
t
0
p(t)
115
140
115
90
115
描點(diǎn)、連線并向左右擴(kuò)展得到函數(shù)p(t)的簡(jiǎn)圖如圖所示:
(4)由圖可知此人的收縮壓為140 mmHg,舒張壓為90 mmHg.
6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375