欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

Fracals and LSystems分形L系統(tǒng)

上傳人:仙*** 文檔編號:40463538 上傳時間:2021-11-15 格式:PPT 頁數(shù):17 大?。?14.50KB
收藏 版權(quán)申訴 舉報 下載
Fracals and LSystems分形L系統(tǒng)_第1頁
第1頁 / 共17頁
Fracals and LSystems分形L系統(tǒng)_第2頁
第2頁 / 共17頁
Fracals and LSystems分形L系統(tǒng)_第3頁
第3頁 / 共17頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《Fracals and LSystems分形L系統(tǒng)》由會員分享,可在線閱讀,更多相關(guān)《Fracals and LSystems分形L系統(tǒng)(17頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、Fractals and L-SystemsBrian Cavalier15-462November 25, 1997Overview The notion of a fractal Self similarity and Iteration Fractal Dimension Fractal Uses L-SystemsWhats With Euclid Anyway? (Motivation) Arent spheres, cubes, and polygons good enough? Well, it depends on your intent, but . Not many int

2、eresting real-world objects are really traditional geometric objects. Coastlines, trees, lightning These could be modeled with cylinders, polygons, etc, but . Their true level of complexity can only be crudely approximated with traditional geometric shapesFirst, a Question How long is the coast line

3、 of Britain? How would you measure it?A Solution? Start by looking at it from a satellite Pick equally spaced points and draw lines between them. Then measure the lines Now you know the length, right? Well, sort of . What if you move closer and decrease the distance between the points? Suddenly what

4、 looked like a straight stretch of coast becomes bays and peninsulasThe Notion of a Fractal “. a geometrically complex object, the complexity of which arises through the repetition of form over some range of scales.” - Ken Musgrave, Texturing and Modeling Say what?Self-Similarity and Iteration Simpl

5、e Shapes repeat themselves exactly at different scales Koch curves and snowflakes Statistical Statistics of a random geometry are similar at different scales Trees, rivers, mountains, lightningPhysical Dimension A point, line, plane, and cube all have physical dimension that we accept as being 0, 1,

6、 2, and 3 respectively. Mandelbrots view Dimension is a scale-dependent term Consider zooming in on a ball of threadFractal Dimension In the Euclidian plane we usually speak of topological dimension, which is always an integer. Fractal dimensions can have non-integer values. What does a dimension of

7、, say, 2.3 mean? 2 is the underlying Euclidian dimension of the fractal The fractional value “slides” from 0 to 0.9999. as the fractal goes from occupying its Euclidian dimension, e.g. plane, to densely filling some part of the next higher dimension.Simple Fractals Using Iteration Use mathematical i

8、teration and simple logic to produce amazing images One kind, you have already seen in the Koch and Sierpinski fractals Another kind is more numerical Mandelbrot Julia fractional Brownian motionMandelbrot Set - How? Simple algorithm using points on the complex plane Pick a point on the complex plane

9、 The corresponding complex number has the form: x + i*y, where i = sqrt( - 1 ) Iterate on the function Zn = Zn-1 2 + C Where Z0 = 0, and Z1 = C2 + C What does Z do? It either Remains near the origin, or Eventually goes toward infinityMandelbrot Set - How? (2) To produce pretty pictures, do this for

10、every point C on the complex plane where -2.5 x 1.5, and -1.5 y 2, the iteration will go to infinity. Color the point C based on the number of iterationsJulia Sets Just a variant on Mandelbrot Sets There is an entire Julia Set corresponding to each point in the complex plane. An infinite number of J

11、ulia Sets Most interesting sets tend to be those found by using points just outside the Mandlebrot set. Similar Iteration formula, but vary Z not C Zn = Zn-12 + CFractional Brownian Motiondouble fBm( Vector point, double H, double lacunarity, double octaves ) if ( firstTimeCalled ) initialize expone

12、nt table for octavesfor( i=0 to octaves-1 ) value = BasisFuction( point )*exponentForOctave( i );point.x *= lacunarity;point.y *= lacunarity;point.z *= lacunarity;if( octaves not and integer ) value += fractionalPartOf( octaves ) * BasisFunction( point )*exponentForOctave( i );return value;Cool, But

13、 What are They Good For? Not just neat pictures in 2D Procedural Textures Terrain Generation Other Realism Music?!?L-Systems Remember the Koch Curve & Snowflake? Think of it as a grammar:Just Add Water . L-Systems “grow” based on their production rules Plants Cells Can control the iteration of production rules and actually animate the growth Grammars of fine enough granularity could simulate growth at the cell level . talk about eating CPU cycles .

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!