欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

《創(chuàng)新設(shè)計》2014屆高考數(shù)學(xué)人教A版(理)一輪復(fù)習(xí)【配套word版文檔】:第五篇 第4講 平面向量應(yīng)用舉例

上傳人:每**** 文檔編號:40522586 上傳時間:2021-11-16 格式:DOC 頁數(shù):12 大?。?27.50KB
收藏 版權(quán)申訴 舉報 下載
《創(chuàng)新設(shè)計》2014屆高考數(shù)學(xué)人教A版(理)一輪復(fù)習(xí)【配套word版文檔】:第五篇 第4講 平面向量應(yīng)用舉例_第1頁
第1頁 / 共12頁
《創(chuàng)新設(shè)計》2014屆高考數(shù)學(xué)人教A版(理)一輪復(fù)習(xí)【配套word版文檔】:第五篇 第4講 平面向量應(yīng)用舉例_第2頁
第2頁 / 共12頁
《創(chuàng)新設(shè)計》2014屆高考數(shù)學(xué)人教A版(理)一輪復(fù)習(xí)【配套word版文檔】:第五篇 第4講 平面向量應(yīng)用舉例_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

8 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《《創(chuàng)新設(shè)計》2014屆高考數(shù)學(xué)人教A版(理)一輪復(fù)習(xí)【配套word版文檔】:第五篇 第4講 平面向量應(yīng)用舉例》由會員分享,可在線閱讀,更多相關(guān)《《創(chuàng)新設(shè)計》2014屆高考數(shù)學(xué)人教A版(理)一輪復(fù)習(xí)【配套word版文檔】:第五篇 第4講 平面向量應(yīng)用舉例(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第4講 平面向量應(yīng)用舉例 A級 基礎(chǔ)演練(時間:30分鐘 滿分:55分) 一、選擇題(每小題5分,共20分) 1.已知a=(1,sin2x),b=(2,sin 2x),其中x∈(0,π).若|a·b|=|a||b|,則tan x的值等于 (  ). A.1 B.-1 C. D. 解析 由|a·b|=|a||b|知,a∥b. 所以sin 2x=2sin2x,即2sin xcos x=2sin2x,而x∈(0,π), 所以sin x=cos x,即x=,故tan x=1. 答案 A 2.(2013

2、83;九江模擬)若|a|=2sin 15°,|b|=4cos 15°,a與b的夾角為30°,則a·b的值是 (  ). A. B. C.2 D. 解析 a·b=|a||b|cos 30°=8sin 15°cos 15°×=4×sin 30°×=. 答案 B 3.(2012·哈爾濱模擬)函數(shù)y=tanx-的部分圖象如圖所示,則(+)·= (  ). A.4 B.6 2 / 1

3、2 C.1 D.2 解析 由條件可得B(3,1),A(2,0), ∴(+)·=(+)·(-)=2-2=10-4=6. 答案 B 4.在△ABC中,∠BAC=60°,AB=2,AC=1,E,F(xiàn)為邊BC的三等分點,則·= (  ). A. B. C. D. 解析 法一 依題意,不妨設(shè)=E,=2, 則有-=(-),即=+; -=2(-),即=+. 所以·=· =(2+)·(+2) =(22+22+5·) =(2×22+2&#

4、215;12+5×2×1×cos 60°)=,選A. 法二 由∠BAC=60°,AB=2,AC=1可得∠ACB=90°, 如圖建立直角坐標(biāo)系,則A(0,1),E,F(xiàn), ∴·=·=·+(-1)·(-1)=+1=,選A. 答案 A 二、填空題(每小題5分,共10分) 5.(2013·溫州適應(yīng)性測試)在平行四邊形ABCD中,已知AB=2,AD=1,∠BAD=60°,E為CD的中點,則·=________. 解析 ·=·(+)=(+

5、)·(-)=2-·-2=1-×1×2cos 60°-×4=-. 答案?。? 6.(2013·東北三校一模)設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若(3b-c)cos A=acos C,S△ABC=,則·=________. 解析 依題意得(3sin B-sin C)cos A=sin Acos C, 即3sin Bcos A=sin Acos C+sin Ccos A=sin(A+C)=sin B>0, 于是有cos A=,sin A==, 又S△ABC=·bcsin A=b

6、c×=,所以 bc=3,·=bccos(π-A)=-bccos A=-3×=-1. 答案?。? 三、解答題(共25分) 7.(12分)(2012·北京海淀模擬)在△ABC中,角A,B,C的對邊分別為a,b,c,若·=·=k(k∈R). (1)判斷△ABC的形狀; (2)若c=,求k的值. 解 (1)∵·=cbcos A,·=cacos B, 又·=·,∴bccos A=accos B, ∴sin Bcos A=sin Acos B, 即sin Acos B-sin Bcos

7、A=0,∴sin(A-B)=0, ∵-π<A-B<π,∴A=B,即△ABC為等腰三角形. (2)由(1)知,·=bccos A=bc·==k, ∵c=,∴k=1. 8.(13分)已知A,B,C的坐標(biāo)分別為A(3,0),B(0,3),C(cos α,sin α),α∈. (1)若||=||,求角α的值; (2)若·=-1,求的值. 解 (1)∵=(cos α-3,sin α),=(cos α,sin α-3), ∴2=(cos α-3)2+sin2α=10-6cos α, 2=cos2α+(sin α-3)2=10-6sin α, 由||

8、=||,可得2=2, 即10-6cos α=10-6sin α,得sin α=cos α. 又α∈,∴α=. (2)由·=-1, 得(cos α-3)cos α+sin α(sin α-3)=-1, ∴sin α+cos α=.① 又==2sin αcos α. 由①式兩邊分別平方,得1+2sin αcos α=, ∴2sin αcos α=-. ∴=-. B級 能力突破(時間:30分鐘 滿分:45分) 一、選擇題(每小題5分,共10分) 1.在△ABC中,a,b,c分別為角A,B,C所對應(yīng)的三角形的邊長,若4a+2b+3c=0,則cos B=

9、 (  ). A.- B. C. D.- 解析 由4a+2b+3c=0,得 4a+3c=-2b=-2b(-)=2b+2b, 所以4a=3c=2b. 由余弦定理得cos B===-. 答案 A 2.(2013·鄭州三模)△ABC的外接圓圓心為O,半徑為2,++=0,且||=||,則在方向上的投影為 (  ). A.1 B.2 C. D.3 解析 如圖,由題意可設(shè)D為BC的中點,由++=0,得+2=0,即=2,∴A,O,D共線且||=2||,又O為△ABC的外心, ∴AO為BC的中垂線, ∴

10、||=||=||=2,||=1, ∴||=,∴在方向上的投影為. 答案 C 二、填空題(每小題5分,共10分) 3.已知向量a=(x-1,2),b=(4,y),若a⊥b,則9x+3y的最小值為________. 解析 若a⊥b,則4(x-1)+2y=0,即2x+y=2. 9x+3y=32x+3y≥2×=2×=6. 當(dāng)且僅當(dāng)x=,y=1時取得最小值. 答案 6 4.(2013·山西大學(xué)附中月考)已知|a|=2|b|≠0,且關(guān)于x的函數(shù)f(x)=x3+|a|x2+a·bx在R上有極值,則a與b的夾角范圍為________. 解析 

11、由題意得:f′(x)=x2+|a|x+a·b必有可變號零點,即Δ=|a|2-4a·b>0,即4|b|2-8|b|2cos〈a,b〉>0,即-1≤cos〈a,b〉<.所以a與b的夾角范圍為. 答案  三、解答題(共25分) 5.(12分)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,向量m=(2sin B,-),n=且m∥n. (1)求銳角B的大??; (2)如果b=2,求S△ABC的最大值. 解 (1)∵m∥n,∴2sin B=-cos 2B, ∴sin 2B=-cos 2B,即tan 2B=-. 又B為銳角,∴2B∈(0,π),∴2B

12、=,∴B=. (2)∵B=,b=2,由余弦定理cos B=, 得a2+c2-ac-4=0.又a2+c2≥2ac,代入上式, 得ac≤4(當(dāng)且僅當(dāng)a=c=2時等號成立). S△ABC=acsin B=ac≤(當(dāng)且僅當(dāng)a=c=2時等號成立),即S△ABC的最大值為. 6.(13分)(2012·南通模擬)已知向量m=, n=. (1)若m·n=1,求cos的值; (2)記f(x)=m·n,在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足(2a-c)cos B=bcos C,求函數(shù)f(A)的取值范圍. 解 (1)m·n=sin

13、·cos +cos2 =sin +=sin+, ∵m·n=1,∴sin=. cos=1-2sin2=, cos=-cos=-. (2)∵(2a-c)cos B=bcos C, 由正弦定理得(2sin A-sin C)cos B=sin Bcos C, ∴2sin Acos B-sin Ccos B=sin Bcos C. ∴2sin Acos B=sin(B+C). ∵A+B+C=π,∴sin(B+C)=sin A≠0. ∴cos B=,∵0<B<π,∴B=,∴0<A<. ∴<+<,sin∈. 又∵f(x)=sin+,∴f(A)=sin+. 故函數(shù)f(A)的取值范圍是. 特別提醒:教師配贈習(xí)題、課件、視頻、圖片、文檔等各種電子資源見《創(chuàng)新設(shè)計·高考總復(fù)習(xí)》光盤中內(nèi)容. 希望對大家有所幫助,多謝您的瀏覽!

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!