《《條件概率》導(dǎo)學(xué)案3》由會(huì)員分享,可在線閱讀,更多相關(guān)《《條件概率》導(dǎo)學(xué)案3(2頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、《條件概率》導(dǎo)學(xué)案 3
【學(xué)習(xí)目標(biāo)】
1. 了解條件概率,獨(dú)立事件及其簡(jiǎn)單應(yīng)用;
2. 掌握運(yùn)用概率的知識(shí)分析解決實(shí)際問(wèn)題的能力;
3. 體會(huì)數(shù)學(xué)知識(shí)在生活中的應(yīng)用,培養(yǎng)隨機(jī)意識(shí) ^
重重點(diǎn)難點(diǎn)】
重點(diǎn):了解條件概率,獨(dú)立事件
難點(diǎn):概率計(jì)算公式的應(yīng)用
【學(xué)法指導(dǎo)】
課前認(rèn)真閱讀課本 43頁(yè)到45頁(yè),完成導(dǎo)學(xué)案 “自主學(xué)習(xí)”。
【自主學(xué)習(xí)】
1 .知識(shí)點(diǎn)歸納
1 .已知事件 B發(fā)生條件下事件 A發(fā)生的概率稱為 ,記 作.(其中,也可以記成)
2 .條件概率公式為 。
類似地,事件A發(fā)生條件下事件B發(fā)生的概率稱為 ,記 作.條件概率公式為 。
3 .一般地,若事件
2、 A, B滿足P(A B )=P(A),則稱事件 .
此時(shí)事件 A和B同時(shí)發(fā)生的概率等于事件 A發(fā)生的概率與事件 B發(fā)生的概率之積,
即.
2 .試一試:
1 .擲兩枚均勻的篩子,已知點(diǎn)數(shù)不同,求至少有一個(gè)是 6的概率。
2 .如圖2—3—2 ,用X,Y,Z三類不同的元
件連接成系統(tǒng) N .當(dāng)元件X,Y,Z都正常工作 ~~ —
時(shí),系統(tǒng) N正常工作.已知元件 X,Y,Z正常工作的概率依次姬2-3-280 , 0.90 , 0.90 ,求系統(tǒng)N正常工作的概率 P .
【合作探究】
例1:某工廠生產(chǎn)了一批產(chǎn)品共有 20件,其中5件是次品,其余都是合格品,現(xiàn)不放
回的從中依次抽
3、取 2件.求:(1)第一次抽到次品的概率; (2)第一次和第二次都
抽到次品的概率;(3)在第一次抽到次品的條件下,第二次抽到次品的概率 ^
現(xiàn)有兩系統(tǒng)都由同類電子元
例2: 一個(gè)系統(tǒng)能正常工作的概率稱為該系統(tǒng)的可靠性
件A, B , C、D所組成.每個(gè)元件的可靠性都是 P,試分別求兩個(gè)系統(tǒng)的可靠性
【當(dāng)堂訓(xùn)練】
1 .甲、乙兩市據(jù)氣象記錄知一年中雨天占的比例分別為 20方口 18%兩地同時(shí)下雨的比
例為12%求:乙市為雨天時(shí),甲市也為雨天的概率 ^
2 .某學(xué)生語(yǔ)、數(shù)、英三科考試成績(jī),在一次考試中排名全班第一的概率依次為: 0.9、
0.8、0.85問(wèn)一次考試中(1)三科成績(jī)均未獲得第一名的概率是多少? (2)恰有一科
成績(jī)未獲得第一名的概率是多少?
【拓展延伸】
有外形相同的球分裝三個(gè)盒子,每盒 10個(gè).其中,第一個(gè)盒子中有 7個(gè)球標(biāo)有字母
A, 3個(gè)球標(biāo)有字母 B;第二個(gè)盒子中有紅球和白球各 5個(gè);第三個(gè)盒子中則有紅球 8
個(gè),白球2個(gè).試驗(yàn)按如下規(guī)則進(jìn)行;先在第一個(gè)盒子中任取一個(gè)球,若取得標(biāo)有字母
A的球,則在第二個(gè)盒子中任取一個(gè)球;若第一次取得標(biāo)有字母 B的球,則在第三個(gè)
盒子中任取一個(gè)球.如果第二次取出的是紅球,則稱試驗(yàn)為成功 .求試驗(yàn)成功的概率.