《高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 坐標(biāo)系與參數(shù)方程 第1節(jié) 坐標(biāo)系學(xué)案 文 北師大版》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 坐標(biāo)系與參數(shù)方程 第1節(jié) 坐標(biāo)系學(xué)案 文 北師大版(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
第一節(jié) 坐標(biāo)系
[考綱傳真] 1.理解坐標(biāo)系的作用,了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況.2.了解極坐標(biāo)的基本概念,會在極坐標(biāo)系中用極坐標(biāo)刻畫點的位置,能進行極坐標(biāo)和直角坐標(biāo)的互化.3.能在極坐標(biāo)系中給出簡單圖形表示的極坐標(biāo)方程.
(對應(yīng)學(xué)生用書第158頁)
[基礎(chǔ)知識填充]
1.平面直角坐標(biāo)系中的坐標(biāo)伸縮變換
設(shè)點P(x,y)是平面直角坐標(biāo)系中的任意一點,在變換φ:的作用下,點P(x,y)對應(yīng)到點P′(x′,y′),稱φ為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換.
2.極坐標(biāo)系
(1)極坐標(biāo)與極坐標(biāo)系的概念
在平面內(nèi)取一個定點O,叫作極點,從O點
2、引一條射線Ox,叫作極軸,選定一個單位長度和角的正方向(通常取逆時針方向).這樣就確定了一個平面極坐標(biāo)系,簡稱為極坐標(biāo)系.對于平面內(nèi)任意一點M,用ρ表示線段OM的長,θ表示以O(shè)x為始邊、OM為終邊的角度,ρ叫作點M的極徑,θ叫作點M的極角,有序?qū)崝?shù)對(ρ,θ)叫做點M的極坐標(biāo),記作M(ρ,θ).
當(dāng)點M在極點時,它的極徑ρ=0,極角θ可以取任意值.
圖
(2)極坐標(biāo)與直角坐標(biāo)的互化
設(shè)M為平面內(nèi)的一點,它的直角坐標(biāo)為(x,y),極坐標(biāo)為(ρ,θ).由圖可知下面關(guān)系式成立:
或
圖
3.常用簡單曲線的極坐標(biāo)方程
曲線
3、
圖形
極坐標(biāo)方程
圓心在極點,半徑為r的圓
ρ=r(0≤θ≤2π)
圓心為(r,0),半徑為r的圓
ρ=2rcos θ
圓心為,半徑為r的圓
ρ=2rsin θ(0≤θ<π)
過極點,傾斜角為α的直線
θ=α(ρ∈R)或
θ=π+α(ρ∈R)
過點(a,0),與極軸垂直的直線
ρcos θ=a
過點,與極軸平行的直線
ρsin θ=a(0<θ<π)
[基本能力自測]
1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“×”)
(1)平面直角坐標(biāo)系內(nèi)的點與坐標(biāo)能建立一一對應(yīng)關(guān)系,在極坐標(biāo)系中點與坐標(biāo)也是一一對應(yīng)
4、關(guān)系.( )
(2)若點P的直角坐標(biāo)為(1,-),則點P的一個極坐標(biāo)是.( )
(3)在極坐標(biāo)系中,曲線的極坐標(biāo)方程不是唯一的.( )
(4)極坐標(biāo)方程θ=π(ρ≥0)表示的曲線是一條直線.( )
[答案] (1)× (2)√ (3)√ (4)×
2.(教材改編)若以直角坐標(biāo)系的原點為極點,x軸的非負半軸為極軸建立極坐標(biāo)系,則線段y=1-x(0≤x≤1)的極坐標(biāo)方程為( )
A.ρ=,0≤θ≤
B.ρ=,0≤θ≤
C.ρ=cos θ+sin θ,0≤θ≤
D.ρ=cos θ+sin θ,0≤θ≤
A [∵y=1-x(0≤x≤1
5、),
∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1),
∴ρ=.]
3.(教材改編)在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系.若曲線C的極坐標(biāo)方程為ρ=2sin θ,則曲線C的直角坐標(biāo)方程為________.
x2+y2-2y=0 [由ρ=2sin θ,得ρ2=2ρsin θ.
所以曲線C的直角坐標(biāo)方程為x2+y2-2y=0.]
4.已知直線l的極坐標(biāo)方程為2ρsin=,點A的極坐標(biāo)為A,則點A到直線l的距離為________.
[由2ρsin=,得
2ρ=,
∴y-x=1.
由A,得點A的直角坐標(biāo)為(2,-2).
6、
∴點A到直線l的距離d==.]
5.已知圓C的極坐標(biāo)方程為ρ2+2ρ·sin-4=0,求圓C的半徑.
【導(dǎo)學(xué)號:00090368】
[解] 以極坐標(biāo)系的極點為平面直角坐標(biāo)系的原點O,以極軸為x軸的正半軸,建立直角坐標(biāo)系xOy.
圓C的極坐標(biāo)方程可化為ρ2+2ρ-4=0,
化簡,得ρ2+2ρsin θ-2ρcos θ-4=0.
則圓C的直角坐標(biāo)方程為
x2+y2-2x+2y-4=0,
即(x-1)2+(y+1)2=6,
所以圓C的半徑為.
(對應(yīng)學(xué)生用書第159頁)
平面直角坐標(biāo)系中的伸縮變換
將圓x2+y2=1上每一點的橫坐標(biāo)保持
7、不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得曲線C.
(1)求曲線C的方程;
(2)設(shè)直線l:2x+y-2=0與C的交點為P1,P2,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,求過線段P1P2的中點且與l垂直的直線的極坐標(biāo)方程.
[解] (1)設(shè)(x1,y1)為圓上的點,在已知變換下變?yōu)榍€C上的點(x,y),依題意,得 2分
由x+y=1得x2+2=1,
故曲線C的方程為x2+=1. 5分
(2)由 解得或 6分
不妨設(shè)P1(1,0),P2(0,2),則線段P1P2的中點坐標(biāo)為,所求直線斜率為k=, 8分
于是所求直線方程為y-1=,
化為極坐標(biāo)方程,并整
8、理得2ρcos θ-4ρsin θ=-3,
故所求直線的極坐標(biāo)方程為ρ=. 10分
[規(guī)律方法] 1.解答該類問題應(yīng)明確兩點:一是根據(jù)平面直角坐標(biāo)系中的伸縮變換公式的意義與作用;二是明確變換前的點P(x,y)與變換后的點P′(x′,y′)的坐標(biāo)關(guān)系,利用方程思想求解.
2.求交點坐標(biāo),得直線方程,最后化為極坐標(biāo)方程,其實質(zhì)是將x=ρcos θ,y=ρsin θ代入轉(zhuǎn)化.
[變式訓(xùn)練1] 在平面直角坐標(biāo)系中,已知伸縮變換φ:
(1)求點A經(jīng)過φ變換所得點A′的坐標(biāo);
(2)求直線l:y=6x經(jīng)過φ變換后所得直線l′的方程.
[解] (1)設(shè)點A′(x′,y′),由
9、伸縮變換
φ:得
∴x′=×3=1,y′==-1.
∴點A′的坐標(biāo)為(1,-1).
(2)設(shè)P′(x′,y′)是直線l′上任意一點.
由伸縮變換φ: 得
代入y=6x,得2y′=6·=2x′,
∴y′=x′為所求直線l′的方程.
極坐標(biāo)與直角坐標(biāo)的互化
(20xx·全國卷Ⅱ)在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρcos θ=4.
(1)M為曲線C1上的動點,點P在線段OM上,且滿足|OM|·|OP|=16,求點P的軌跡C2的直角坐標(biāo)方程;
(2)設(shè)點A的
10、極坐標(biāo)為,點B在曲線C2上,求△OAB面積的最大值.
[解] (1)設(shè)點P的極坐標(biāo)為(ρ,θ)(ρ>0),點M的極坐標(biāo)為(ρ1,θ)(ρ1>0).
由題設(shè)知|OP|=ρ,|OM|=ρ1=.
由|OM|·|OP|=16得C2的極坐標(biāo)方程ρ=4cos θ(ρ>0). 2分
因此C2的直角坐標(biāo)方程為(x-2)2+y2=4(x≠0). 4分
(2)設(shè)點B的極坐標(biāo)為(ρB,α)(ρB>0).
由題設(shè)知|OA|=2,ρB=4cos α,于是△OAB的面積
S=|OA|·ρB·sin∠AOB 6分
=4cos α·
11、
=2≤2+. 8分
當(dāng)α=-時,S取得最大值2+.
所以△OAB面積的最大值為2+. 10分
[規(guī)律方法] 1.進行極坐標(biāo)方程與直角坐標(biāo)方程互化的關(guān)鍵是靈活應(yīng)用互化公式:x=ρcos θ,y=ρsin θ,ρ2=x2+y2,tan θ=(x≠0).
2.進行極坐標(biāo)方程與直角坐標(biāo)方程互化時,要注意ρ,θ的取值范圍及其影響;要善于對方程進行合理變形,并重視公式的逆向與變形使用;要靈活運用代入法和平方法等方法.
[變式訓(xùn)練2] (20xx·北京高考改編)在極坐標(biāo)系中,已知極坐標(biāo)方程C1:ρcos θ-ρsin θ-1=0,C2:ρ=2cos θ.
(1)求曲線
12、C1,C2的直角坐標(biāo)方程,并判斷兩曲線的形狀;
(2)若曲線C1,C2交于A,B兩點,求兩交點間的距離.
[解] (1)由C1:ρcos θ-ρsin θ-1=0,
∴x-y-1=0,表示一條直線.
由C2:ρ=2cos θ,得ρ2=2ρcos θ,
∴x2+y2=2x,則(x-1)2+y2=1.
∴C2是圓心為(1,0),半徑r=1的圓.
(2)由(1)知點(1,0)在直線x-y-1=0上,
因此直線C1過圓C2的圓心.
∴兩交點A,B的連線段是圓C2的直徑.
因此兩交點A,B間的距離|AB|=2r=2.
直線與圓的極坐標(biāo)方程的應(yīng)用
(20x
13、x·全國卷Ⅰ)在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(t為參數(shù),a>0).在以坐標(biāo)原點為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=4cos θ.
(1)說明C1是哪一種曲線,并將C1的方程化為極坐標(biāo)方程;
(2)直線C3的極坐標(biāo)方程為θ=α0,其中α0滿足tan α0=2,若曲線C1與C2的公共點都在C3上,求A.
[解] (1)消去參數(shù)t得到C1的普通方程為x2+(y-1)2=a2,則C1是以(0,1)為圓心,a為半徑的圓. 2分
將x=ρcos θ,y=ρsin θ代入C1的普通方程中,得到C1的極坐標(biāo)方程為ρ2-2ρsin θ+1-a2=0.
14、 4分
(2)曲線C1,C2的公共點的極坐標(biāo)滿足方程組
若ρ≠0,由方程組得16cos2θ-8sin θcos θ+1-a2=0,
由已知tan θ=2,得16cos2θ-8sin θcos θ=0, 8分
從而1-a2=0,解得a=-1(舍去)或a=1.
當(dāng)a=1時,極點也為C1,C2的公共點,且在C3上.
所以a=1. 10分
[規(guī)律方法] 1.第(1)問將曲線C1的參數(shù)方程先化為普通方程,再化為極坐標(biāo)方程,考查學(xué)生的化歸與轉(zhuǎn)化能力.第(2)問中關(guān)鍵是理解極坐標(biāo)方程,有意識地將問題簡單化,進而求解.
2.由極坐標(biāo)方程求曲線交點、距離等幾何問題時,如
15、果不能直接用極坐標(biāo)方程解決,可先轉(zhuǎn)化為直角坐標(biāo)方程,然后求解.
[變式訓(xùn)練3] (20xx·石家莊模擬)已知曲線C1:x+y=和C2:(φ為參數(shù)).以原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,且兩種坐標(biāo)系中取相同的長度單位.
(1)把曲線C1和C2的方程化為極坐標(biāo)方程;
(2)設(shè)C1與x,y軸交于M,N兩點,且線段MN的中點為P.若射線OP與C1,C2交于P,Q兩點,求P,Q兩點間的距離.
[解] (1)曲線C1化為ρcos θ+ρsin θ=.
∴ρsin=. 2分
曲線C2化為+=1.(*)
將x=ρcos θ,y=ρsin θ代入(*)式
得cos2θ+sin2θ=1,即ρ2(cos2θ+3sin2θ)=6.
∴曲線C2的極坐標(biāo)方程為ρ2=. 4分
(2)∵M(,0),N(0,1),∴P,
∴OP的極坐標(biāo)方程為θ=, 6分
把θ=代入ρsin=得ρ1=1,P.
把θ=代入ρ2=得ρ2=2,Q. 8分
∴|PQ|=|ρ2-ρ1|=1,即P,Q兩點間的距離為1. 10分