欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

人教A版理科高考數(shù)學(xué)一輪細講精練【選修44】坐標(biāo)系與參數(shù)方程

上傳人:仙*** 文檔編號:42005473 上傳時間:2021-11-24 格式:DOC 頁數(shù):23 大?。?.49MB
收藏 版權(quán)申訴 舉報 下載
人教A版理科高考數(shù)學(xué)一輪細講精練【選修44】坐標(biāo)系與參數(shù)方程_第1頁
第1頁 / 共23頁
人教A版理科高考數(shù)學(xué)一輪細講精練【選修44】坐標(biāo)系與參數(shù)方程_第2頁
第2頁 / 共23頁
人教A版理科高考數(shù)學(xué)一輪細講精練【選修44】坐標(biāo)系與參數(shù)方程_第3頁
第3頁 / 共23頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《人教A版理科高考數(shù)學(xué)一輪細講精練【選修44】坐標(biāo)系與參數(shù)方程》由會員分享,可在線閱讀,更多相關(guān)《人教A版理科高考數(shù)學(xué)一輪細講精練【選修44】坐標(biāo)系與參數(shù)方程(23頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、選修4-4 坐標(biāo)系與參數(shù)方程 第1講 坐標(biāo)系 [最新考綱] 1.理解坐標(biāo)系的作用.了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況. 2.會在極坐標(biāo)系中用極坐標(biāo)刻畫點的位置,能進行極坐標(biāo)和直角坐標(biāo)的互化. 3.能在極坐標(biāo)系中給出簡單圖形(如過極點的直線、過極點或圓心在極點的圓)表示的極坐標(biāo)方程. 知 識 梳 理 1.極坐標(biāo)系 (1)極坐標(biāo)系的建立:在平面上取一個定點O,叫做極點,從O點引一條射線Ox,叫做極軸,再選定一個長度單位、一個角度單位(通常取弧度)及其正方向(通常取逆時針方向),這樣就確定了一個極坐標(biāo)系. 設(shè)M是平面內(nèi)一點,極點O與點M的距離OM叫做點

2、M的極徑,記為ρ,以極軸Ox為始邊,射線OM為終邊的角叫做點M的極角,記為θ.有序數(shù)對(ρ,θ)叫做點M的極坐標(biāo),記作M(ρ,θ). (2)極坐標(biāo)與直角坐標(biāo)的關(guān)系:把直角坐標(biāo)系的原點作為極點,x軸的正半軸作為極軸,并在兩種坐標(biāo)系中取相同的長度單位,設(shè)M是平面內(nèi)任意一點,它的直角坐標(biāo)是(x,y),極坐標(biāo)為(ρ,θ),則它們之間的關(guān)系為x=ρcos θ,y=ρsin_θ.另一種關(guān)系為ρ2=x2+y2,tan θ=. 2.直線的極坐標(biāo)方程 若直線過點M(ρ0,θ0),且極軸到此直線的角為α,則它的方程為:ρsin(θ-α)=ρ0sin (θ0-α). 幾個特殊位置的直線的極坐標(biāo)方程 (1)

3、直線過極點:θ=θ0和θ=π-θ0; (2)直線過點M(a,0)且垂直于極軸:ρcos θ=a; (3)直線過M且平行于極軸:ρsin θ=b. 3.圓的極坐標(biāo)方程 若圓心為M(ρ0,θ0),半徑為r的圓方程為 ρ2-2ρ0ρcos(θ-θ0)+ρ-r2=0. 幾個特殊位置的圓的極坐標(biāo)方程 (1)當(dāng)圓心位于極點,半徑為r:ρ=r; (2)當(dāng)圓心位于M(a,0),半徑為a:ρ=2acos_θ; (3)當(dāng)圓心位于M,半徑為a:ρ=2asin_θ. 診 斷 自 測 1.點P的直角坐標(biāo)為(-,),那么它的極坐標(biāo)可表示為________. 解析 直接利用極坐標(biāo)與直角坐標(biāo)的互化公式

4、. 答案  2.若曲線的極坐標(biāo)方程為ρ=2sin θ+4cos θ,以極點為原點,極軸為x軸正半軸建立直角坐標(biāo)系,則該曲線的直角坐標(biāo)方程為________. 解析 ∵ρ=2sin θ+4cos θ, ∴ρ2=2ρsin θ+4ρcos θ. ∴x2+y2=2y+4x, 即x2+y2-2y-4x=0. 答案 x2+y2-4x-2y=0 3.(2014西安五校一模)在極坐標(biāo)系(ρ,θ)(0≤θ<2π)中,曲線ρ=2sin θ與ρcos θ=-1的交點的極坐標(biāo)為________. 解析 ρ=2sin θ的直角坐標(biāo)方程為x2+y2-2y=0,ρcos θ=-1的直角坐標(biāo)方程為x=

5、-1,聯(lián)立方程,得解得即兩曲線的交點為(-1,1),又0≤θ<2π,因此這兩條曲線的交點的極坐標(biāo)為. 答案  4.在極坐標(biāo)系中,直線l的方程為ρsin θ=3,則點到直線l的距離為________. 解析 ∵直線l的極坐標(biāo)方程可化為y=3,點化為直角坐標(biāo)為(,1), ∴點到直線l的距離為2. 答案 2 5.在極坐標(biāo)系中,圓ρ=4sin θ的圓心到直線θ=(ρ∈R)的距離是________. 解析 將極坐標(biāo)方程轉(zhuǎn)化為平面直角坐標(biāo)系中的一般方程求解,極坐標(biāo)系中的圓ρ=4sin θ轉(zhuǎn)化為平面直角坐標(biāo)系中的一般方程為:x2+y2=4y,即x2+(y-2)2=4,其圓心為(0,2),直線θ

6、=轉(zhuǎn)化為平面直角坐標(biāo)系中的方程為y=x,即x-3y=0. ∴圓心(0,2)到直線x-3y=0的距離為 =. 答案  考點一 極坐標(biāo)與直角坐標(biāo)的互化 【例1】 (1)把點M的極坐標(biāo)化成直角坐標(biāo); (2)把點M的直角坐標(biāo)(-,-1)化成極坐標(biāo). 解 (1)∵x=-5cos =-,y=-5sin =-, ∴點M的直角坐標(biāo)是. (2)ρ===2, tan θ==. ∵點M在第三象限,ρ>0,∴最小正角θ=. 因此,點M的極坐標(biāo)是. 規(guī)律方法 (1)在由點的直角坐標(biāo)化為極坐標(biāo)時,一定要注意點所在的象限和極角的范圍,否則點的極坐標(biāo)將不唯一. (2)在曲線的方程進行互化時,一

7、定要注意變量的范圍.要注意轉(zhuǎn)化的等價性. 【訓(xùn)練1】 (1)把點M的極坐標(biāo)化成直角坐標(biāo); (2)把點P的直角坐標(biāo)(,-)化成極坐標(biāo).(ρ>0,0≤θ<2π) 解 (1)x=8cos =-4,y=8sin =4, 因此,點M的直角坐標(biāo)是(-4,4). (2)ρ==2,tan θ==-, 又因為點在第四象限,得θ=. 因此,點P的極坐標(biāo)為. 考點二 直角坐標(biāo)方程與極坐標(biāo)方程的互化 【例2】 在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos=1,M,N分別為曲線C與x軸,y軸的交點. (1)寫出曲線C的直角坐標(biāo)方程,并求M,N的極坐標(biāo);

8、 (2)設(shè)M,N的中點為P,求直線OP的極坐標(biāo)方程. 解 (1)∵ρcos=1, ∴ρcos θcos +ρsin θsin =1. 又,∴x+y=1. 即曲線C的直角坐標(biāo)方程為x+y-2=0. 令y=0,則x=2;令x=0,則y=. ∴M(2,0),N. ∴M的極坐標(biāo)為(2,0),N的極坐標(biāo)為. (2)M,N連線的中點P的直角坐標(biāo)為, P的極角為θ=. ∴直線OP的極坐標(biāo)方程為θ=(ρ∈R). 規(guī)律方法 直角坐標(biāo)方程與極坐標(biāo)方程的互化,關(guān)鍵要掌握好互化公式,研究極坐標(biāo)系下圖形的性質(zhì),可轉(zhuǎn)化為我們熟悉的直角坐標(biāo)系的情境. 【訓(xùn)練2】 ⊙O1和⊙O2的極坐標(biāo)方程分別為ρ

9、=4cos θ,ρ=-4sin θ. (1)把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程; (2)求經(jīng)過⊙O1,⊙O2交點的直線的直角坐標(biāo)方程. 解 以極點的原點,極軸為x軸正半軸建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位. (1)ρ=4cos θ,兩邊同乘以ρ,得ρ2=4ρcos θ; ρ=-4sin θ,兩邊同乘以ρ,得ρ2=-4ρsin θ. 由ρcos θ=x,ρsin θ=y(tǒng),ρ2=x2+y2, 得⊙O1,⊙O2的直角坐標(biāo)方程分別為 x2+y2-4x=0和x2+y2+4y=0. (2)由 ①-②得-4x-4y=0,即x+y=0為所求直線方程. 考點三 曲線極

10、坐標(biāo)方程的應(yīng)用 【例3】 (2014廣州調(diào)研)在極坐標(biāo)系中,求直線ρsin=2被圓ρ=4截得的弦長. 解 由ρsin=2,得(ρsin θ+ρcos θ)=2可化為x+y-2=0.圓ρ=4可化為x2+y2=16,由圓中的弦長公式得:2=2=4.故所求弦長為4. 規(guī)律方法 在已知極坐標(biāo)方程求曲線交點、距離、線段長等幾何問題時,如果不能直接用極坐標(biāo)解決,或用極坐標(biāo)解決較麻煩,可將極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程解決. 【訓(xùn)練3】 (2012江蘇卷)在極坐標(biāo)系中,已知圓C經(jīng)過點P(,),圓心為直線ρsin=-與極軸的交點,求圓C的極坐標(biāo)方程. 解 在ρsin=-中令θ=0,得ρ=1, 所以

11、圓C的圓心坐標(biāo)為(1,0). 因為圓C經(jīng)過點P, 所以圓C的半徑 PC= =1, 于是圓C過極點,所以圓C的極坐標(biāo)方程為ρ=2cos θ. 因忽視極坐標(biāo)系下點的極坐標(biāo)不唯一性致誤 【典例】 (10分)在極坐標(biāo)系下,若點P(ρ,θ)的一個極坐標(biāo)為,求以為坐標(biāo)的不同的點的極坐標(biāo). [錯解展示] 甲:解 化為直角坐標(biāo)為(-2,2),故該點與原點的中點坐標(biāo)為(-1,),化為極坐標(biāo)為. 乙:解 ∵ρ=4,θ=,故=2,=, 因此所求極坐標(biāo)為. [規(guī)范解答] ∵為點P(ρ,θ)的一個極坐標(biāo). ∴ρ=4或ρ=-4. (2分)

12、 當(dāng)ρ=4時,θ=2kπ+(k∈Z), ∴=2,=kπ+(k∈Z). (4分) 當(dāng)ρ=-4時,θ=2kπ+(k∈Z), ∴=-2,=kπ+(k∈Z). (6分) ∴有四個不同的點: P1,P2(k∈Z), P3,P4(k∈Z) (10分) [反思感悟] 甲生解法中將直角坐標(biāo)系的中點坐標(biāo)公式應(yīng)用于極坐標(biāo)系中的中點,事實上(ρ,θ)與的關(guān)系并不是點(ρ,θ)與極點的中點為,從幾何意義上講點應(yīng)滿足該點的極角為θ的,極徑為ρ的.乙生解法中滿足的幾何意義,但由于極坐標(biāo)系內(nèi)點的極坐標(biāo)的不唯一性,還應(yīng)就點(ρ,θ)的其他形式的極坐標(biāo)進行討論. 【自主體驗】 下列各點中與極坐標(biāo)不表示同

13、一個點的極坐標(biāo)是________. ①?、凇、邸、? 解析 因為與表示同一點的坐標(biāo)有或,其中k∈Z,所以易得只有②不同. 答案?、? 一、填空題 1.在極坐標(biāo)系中,圓ρ=-2sin θ的圓心的極坐標(biāo)是________(填序號). ①;②;③(1,0);④(1,π) 解析 圓的方程可化為ρ2=-2ρsin θ,由 得x2+y2=-2y,即x2+(y+1)2=1,圓心為(0,-1), 化為極坐標(biāo)為. 答案?、? 2.極坐標(biāo)方程(ρ-1)(θ-π)=0(ρ≥0)表示的圖形是______(填序號). ①兩個圓;②兩條直線;③一個圓和一條射線;④一條直線和一條射線. 解析 由

14、(ρ-1)(θ-π)=0(ρ≥0)得,ρ=1或θ=π.其中ρ=1表示以極點為圓心,半徑為1的圓,θ=π表示以極點為起點與Ox反向的射線. 答案?、? 3.在極坐標(biāo)系中,點到圓ρ=2cos θ的圓心的距離為________. 解析 點化為直角坐標(biāo)為(1,),方程ρ=2cos θ化為普通方程為x2+y2-2x=0,故圓心為(1,0),則點(1,)到圓心(1,0)的距離為. 答案  4.在極坐標(biāo)系(ρ,θ)(0≤θ<2π)中,曲線ρ(cos θ+sin θ)=1與ρ(sin θ-cos θ)=1的交點的極坐標(biāo)為________. 解析 曲線ρ(cos θ+sin θ)=1化為直角坐標(biāo)方程為

15、x+y=1,ρ(sin θ-cos θ)=1化為直角坐標(biāo)方程為y-x=1.聯(lián)立方程組得則交點為(0,1),對應(yīng)的極坐標(biāo)為. 答案  5.(2014汕頭調(diào)研)在極坐標(biāo)系中,ρ=4sin θ是圓的極坐標(biāo)方程,則點A到圓心C的距離是________. 解析 將圓的極坐標(biāo)方程ρ=4sin θ化為直角坐標(biāo)方程為x2+y2-4y=0,圓心坐標(biāo)為(0,2).又易知點A的直角坐標(biāo)為(2,2),故點A到圓心的距離為=2. 答案 2 6.在極坐標(biāo)系中,過圓ρ=6cos θ-2sin θ的圓心且與極軸垂直的直線的極坐標(biāo)方程為________. 解析 由ρ=6cos θ-2sin θ?ρ2=6ρcos θ

16、-2ρsin θ,所以圓的直角坐標(biāo)方程為x2+y2-6x+2y=0,將其化為標(biāo)準(zhǔn)形式為(x-3)2+(y+)2=11,故圓心的坐標(biāo)為(3,-),所以過圓心且與x軸垂直的直線的方程為x=3,將其化為極坐標(biāo)方程為ρcos θ=3. 答案 ρcos θ=3 7.(2014華南師大模擬)在極坐標(biāo)系中,點M到曲線ρcos=2上的點的距離的最小值為________. 解析 依題意知,點M的直角坐標(biāo)是(2,2),曲線的直角坐標(biāo)方程是x+y-4=0,因此所求的距離的最小值等于點M到該直線的距離,即為=2. 答案 2 8.在極坐標(biāo)系中,曲線C1:ρ=2cos θ,曲線C2:θ=,若曲線C1與C2交于A

17、、B兩點,則線段AB=________. 解析 曲線C1與C2均經(jīng)過極點,因此極點是它們的一個公共點.由得即曲線C1與C2的另一個交點與極點的距離為,因此AB=. 答案  9.在極坐標(biāo)系中,由三條直線θ=0,θ=,ρcos θ+ρsin θ=1圍成圖形的面積是________. 解析 θ=0,θ=,ρcos θ+ρsin θ=1三直線對應(yīng)的直角坐標(biāo)方程分別為:y=0,y=x,x+y=1,作出圖形得圍成圖形為如圖△OAB,S=. 答案  二、解答題 10.設(shè)過原點O的直線與圓(x-1)2+y2=1的一個交點為P,點M為線段OP的中點,當(dāng)點P在圓上移動一周時,求點M軌跡的極坐標(biāo)方

18、程,并說明它是什么曲線. 解 圓(x-1)2+y2=1的極坐標(biāo)方程為 ρ=2cos θ,設(shè)點P的極坐標(biāo)為(ρ1,θ1),點M的極坐標(biāo)為(ρ,θ), ∵點M為線段OP的中點,∴ρ1=2ρ,θ1=θ,將ρ1=2ρ,θ1=θ代入圓的極坐標(biāo)方程,得ρ=cos θ.∴點M軌跡的極坐標(biāo)方程為ρ=cos θ,它表示圓心在點,半徑為的圓. 11.(2012遼寧卷)在直角坐標(biāo)系xOy中,圓C1:x2+y2=4,圓C2:(x-2)2+y2=4. (1)在以O(shè)為極點,x軸正半軸為極軸的極坐標(biāo)系中,分別寫出圓C1,C2的極坐標(biāo)方程,并求出圓C1,C2的交點坐標(biāo)(用極坐標(biāo)表示); (2)求圓C1與C2的公共

19、弦的參數(shù)方程. 解 (1)圓C1的極坐標(biāo)方程為ρ=2, 圓C2的極坐標(biāo)方程為ρ=4cos θ. 解得ρ=2,θ=, 故圓C1與圓C2交點的坐標(biāo)為,. 注:極坐標(biāo)系下點的表示不唯一. (2)法一 由得圓C1與C2交點的直角坐標(biāo)分別為(1,),(1,-). 故圓C1與C2的公共弦的參數(shù)方程為 -≤t≤. 法二 將x=1代入 得ρcos θ=1,從而ρ=. 于是圓C1與C2的公共弦的參數(shù)方程為 -≤θ≤. 12.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)).M是C1上的動點,P點滿足=2 ,P點的軌跡為曲線C2. (1)求C2的方程; (2)在以O(shè)為極點,

20、x軸的正半軸為極軸的極坐標(biāo)系中,射線θ=與C1的異于極點的交點為A,與C2的異于極點的交點為B,求AB. 解 (1)設(shè)P(x,y),則由條件知M. 由于M點在C1上,所以 即 從而C2的參數(shù)方程為(α為參數(shù)) (2)曲線C1的極坐標(biāo)方程為ρ=4sin θ,曲線C2的極坐標(biāo)方程為ρ=8sin θ.射線θ=與C1的交點A的極徑為ρ1=4sin , 射線θ=與C2的交點B的極徑為ρ2=8sin . 所以AB=|ρ2-ρ1|=2. 第2講 參數(shù)方程 [最新考綱] 1.了解參數(shù)方程,了解參數(shù)的意義. 2.能選擇適當(dāng)?shù)膮?shù)寫出直線、圓和橢圓的參數(shù)方程. 3.掌握直線的參數(shù)方程及參數(shù)

21、的幾何意義,能用直線的參數(shù)方程解決簡單的相關(guān)問題. 知 識 梳 理 1.曲線的參數(shù)方程 在平面直角坐標(biāo)系xOy中,如果曲線上任意一點的坐標(biāo)x,y都是某個變量t的函數(shù) 并且對于t的每一個允許值上式所確定的點M(x,y)都在這條曲線上,則稱上式為該曲線的參數(shù)方程,其中變量t稱為參數(shù). 2.一些常見曲線的參數(shù)方程 (1)過點P0(x0,y0),且傾斜角為α的直線的參數(shù)方程為(t為參數(shù)). (2)圓的方程(x-a)2+(y-b)2=r2的參數(shù)方程為(θ為參數(shù)). (3)橢圓方程+=1(a>b>0)的參數(shù)方程為(θ為參數(shù)). (4)拋物線方程y2=2px(p>0)的參數(shù)方程為(t為

22、參數(shù)). 診 斷 自 測 1.極坐標(biāo)方程ρ=cos θ和參數(shù)方程(t為參數(shù))所表示的圖形分別是________. ①直線、直線;②直線、圓;③圓、圓;④圓、直線. 解析 ∵ρcos θ=x,∴cos θ=代入到ρ=cos θ,得ρ=,∴ρ2=x,∴x2+y2=x表示圓.又∵相加得x+y=1,表示直線. 答案 ④ 2.若直線(t為實數(shù))與直線4x+ky=1垂直,則常數(shù)k=________. 解析 參數(shù)方程所表示的直線方程為3x+2y=7,由此直線與直線4x+ky=1垂直可得-=-1,解得k=-6. 答案?。? 3.(2012北京卷)直線(t為參數(shù))與曲線(α為參數(shù))的交點個數(shù)為

23、________. 解析 直線方程可化為x+y-1=0,曲線方程可化為x2+y2=9,圓心(0,0)到直線x+y-1=0的距離d==<3.∴直線與圓相交有兩個交點. 答案 2 4.已知直線l:(t為參數(shù))上到點A(1,2)的距離為4的點的坐標(biāo)為________. 解析 設(shè)點Q(x,y)為直線上的點, 則|QA|= ==4, 解之得,t=2,所以Q(-3,6)或Q(5,-2). 答案 (-3,6)和(5,-2) 5.(2013廣東卷)已知曲線C的極坐標(biāo)方程為ρ=2cos θ,以極點為原點,極軸為x軸的正半軸建立直角坐標(biāo)系,則曲線C的參數(shù)方程為________. 解析 由ρ=2

24、cos θ知,ρ2=2ρcos θ 所以x2+y2=2x,即(x-1)2+y2=1, 故其參數(shù)方程為(θ為參數(shù)). 答案 (θ為參數(shù)) 考點一 參數(shù)方程與普通方程的互化 【例1】 把下列參數(shù)方程化為普通方程,并說明它們各表示什么曲線; (1)(t為參數(shù)); (2)(t為參數(shù)); (3)(t為參數(shù)). 解 (1)由x=1+t得t=2x-2. ∴y=2+(2x-2). ∴x-y+2-=0,此方程表示直線. (2)由y=2+t得t=y(tǒng)-2,∴x=1+(y-2)2. 即(y-2)2=x-1,此方程表示拋物線. (3) ∴①2-②2得x2-y2=4,此方程表示雙曲線.

25、 規(guī)律方法 參數(shù)方程化為普通方程:化參數(shù)方程為普通方程的基本思路是消去參數(shù),常用的消參方法有代入消去法、加減消去法、恒等式(三角的或代數(shù)的)消去法,不要忘了參數(shù)的范圍. 【訓(xùn)練1】 將下列參數(shù)方程化為普通方程. (1)(θ為參數(shù)); (2)(t為參數(shù)). 解 (1)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ), 得y2=2-x.又x=1-sin 2θ∈[0,2], 得所求的普通方程為y2=2-x,x∈[0,2]. (2)由參數(shù)方程得et=x+y,e-t=x-y, ∴(x+y)(x-y)=1,即x2-y2=1. 考點二 直線與圓參數(shù)方程的應(yīng)用 【

26、例2】 在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2sin θ. (1)求圓C的直角坐標(biāo)方程; (2)設(shè)圓C與直線l交于點A,B,若點P的坐標(biāo)為(3,),求|PA|+|PB|. 解 (1)由ρ=2sin θ,得ρ2=2ρsin θ. ∴x2+y2=2y,即x2+(y-)2=5. (2)將l的參數(shù)方程代入圓C的直角坐標(biāo)方程. 得2+2=5,即t2-3t+4=0. 由于Δ=(3)2-44=2>0,故可設(shè)t1,t2是上述方程的兩實根, 所以 又直線l過點P(3,),

27、 故由上式及t的幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2=3. 規(guī)律方法 (1)過定點P0(x0,y0),傾斜角為α的直線參數(shù)方程的標(biāo)準(zhǔn)形式為(t為參數(shù)),t的幾何意義是直線上的點P到點P0(x0,y0)的數(shù)量,即t=|PP0|時為距離.使用該式時直線上任意兩點P1、P2對應(yīng)的參數(shù)分別為t1、t2,則|P1P2|=|t1-t2|,P1P2的中點對應(yīng)的參數(shù)為(t1+t2). (2)對于形如(t為參數(shù)),當(dāng)a2+b2≠1時,應(yīng)先化為標(biāo)準(zhǔn)形式后才能利用t的幾何意義解題. 【訓(xùn)練2】 已知直線l的參數(shù)方程為(參數(shù)t∈R),圓 C的參數(shù)方程為(參數(shù)θ∈[0,2π]),求直線

28、l被 圓C所截得的弦長. 解 由消參數(shù)后得普通方程為2x+y-6=0, 由消參數(shù)后得普通方程為(x-2)2+y2=4,顯然圓心坐標(biāo)為(2,0),半徑為2.由于圓心到直線2x+y-6=0的距離為d==, 所以所求弦長為2 =. 考點三 極坐標(biāo)、參數(shù)方程的綜合應(yīng)用 【例3】 已知P為半圓C:(θ為參數(shù),0≤θ≤π)上的點,點A的坐標(biāo)為(1,0),O為坐標(biāo)原點,點M在射線OP上,線段OM與C的弧的長度均為. (1)以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,求點M的極坐標(biāo); (2)求直線AM的參數(shù)方程. 解 (1)由已知,點M的極角為,且點M的極徑等于,故點M的極坐標(biāo)為

29、. (2)點M的直角坐標(biāo)為,A(1,0). 故直線AM的參數(shù)方程為(t為參數(shù)). 規(guī)律方法 涉及參數(shù)方程和極坐標(biāo)方程的綜合題,求解的一般方法是分別化為普通方程和直角坐標(biāo)方程后求解.當(dāng)然,還要結(jié)合題目本身特點,確定選擇何種方程. 【訓(xùn)練3】 (2013福建卷)在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知點A的極坐標(biāo)為(,),直線l的極坐標(biāo)方程為ρcos(θ-)=a,且點A在直線l上. (1)求a的值及直線l的直角坐標(biāo)方程; (2)圓C的參數(shù)方程為(α為參數(shù)),試判斷直線l與圓C的位置關(guān)系. 解 (1)由點A(,)在直線ρcos(θ-)=a上,可得a=.

30、 所以直線l的方程可化為ρcos θ+ρsin θ=2, 從而直線l的直角坐標(biāo)方程為x+y-2=0. (2)由已知得圓C的直角坐標(biāo)方程為(x-1)2+y2=1, 所以圓C的圓心為(1,0),半徑r=1, 因為圓心C到直線l的距離d==<1, 所以直線l與圓C相交. 轉(zhuǎn)化思想在解題中的應(yīng)用 【典例】 已知圓錐曲線(θ是參數(shù))和定點A(0, ),F(xiàn)1、F2是圓錐曲線的左、右焦點. (1)求經(jīng)過點F1且垂直于直線AF2的直線l的參數(shù)方程; (2)以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,求直線AF2的極坐標(biāo)方程. [審題視點] (1)先將圓錐曲線參數(shù)方程化為普通方程

31、,求出F1的坐標(biāo),然后求出直線的傾斜角度數(shù),再利用公式就能寫出直線l的參數(shù)方程.(2)直線AF2是已知確定的直線,利用求極坐標(biāo)方程的一般方法求解. 解 (1)圓錐曲線化為普通方程+=1,所以F1(-1,0),F(xiàn)2(1,0),則直線AF2的斜率k=-,于是經(jīng)過點F1且垂直于直線AF2的直線l的斜率k′=,直線l的傾斜角是30, 所以直線l的參數(shù)方程是(t為參數(shù)), 即(t為參數(shù)). (2)直線AF2的斜率k=-,傾斜角是120, 設(shè)P(ρ,θ)是直線AF2上任一點, 則=,ρsin(120-θ)=sin 60, 則ρsin θ+ρcos θ=. [反思感悟] (1)本題考查了極坐

32、標(biāo)方程和參數(shù)方程的求法及應(yīng)用.重點考查了轉(zhuǎn)化與化歸能力.(2)當(dāng)用極坐標(biāo)或參數(shù)方程研究問題不很熟練時,可以轉(zhuǎn)化成我們比較熟悉的普通方程求解.(3)本題易錯點是計算不準(zhǔn)確,極坐標(biāo)方程求解錯誤. 【自主體驗】 已知直線l的參數(shù)方程為(t為參數(shù)),P是橢圓+y2=1上任意一點,求點P到直線l的距離的最大值. 解 將直線l的參數(shù)方程(t為參數(shù))轉(zhuǎn)化為普通方程為x+2y=0,因為P為橢圓+y2=1上任意一點, 故可設(shè)P(2cos θ,sin θ),其中θ∈R. 因此點P到直線l的距離 d==. 所以當(dāng)θ=kπ+,k∈Z時, d取得最大值. 一、填空題 1.(2014蕪湖模擬)直線

33、(t為參數(shù))上與點A(-2,3)的距離等于的點的坐標(biāo)是________. 解析 由題意知(-t)2+(t)2=()2,所以t2=,t=,代入(t為參數(shù)),得所求點的坐標(biāo)為(-3,4)或(-1,2). 答案 (-3,4)或(-1,2) 2.(2014海淀模擬)若直線l:y=kx與曲線C:(參數(shù)θ∈R)有唯一的公共點,則實數(shù)k=________. 解析 曲線C化為普通方程為(x-2)2+y2=1,圓心坐標(biāo)為(2,0),半徑r=1.由已知l與圓相切,則r==1?k=. 答案  3.已知橢圓的參數(shù)方程(t為參數(shù)),點M在橢圓上,對應(yīng)參數(shù)t=,點O為原點,則直線OM的斜率為________.

34、 解析 當(dāng)t=時,x=1,y=2,則M(1,2),∴直線OM的斜率k=2. 答案 2 4.(2013湖南卷)在平面直角坐標(biāo)系xOy中,若l:(t為參數(shù))過橢圓C:(φ為參數(shù))的右頂點,則常數(shù)a的值為________. 解析 ∵x=t,且y=t-a, 消去t,得直線l的方程y=x-a, 又x=3cos φ且y=2sin φ,消去φ, 得橢圓方程+=1,右頂點為(3,0), 依題意0=3-a, ∴a=3. 答案 3 5.直線3x+4y-7=0截曲線(α為參數(shù))的弦長為________. 解析 曲線可化為x2+(y-1)2=1,圓心(0,1)到直線的距離d==,則弦長l=2=

35、. 答案  6.已知直線l1:(t為參數(shù)),l2:(s為參數(shù)),若l1∥l2,則k=________;若l1⊥l2,則k=________. 解析 將l1、l2的方程化為直角坐標(biāo)方程得l1:kx+2y-4-k=0,l2:2x+y-1=0,由l1∥l2,得=≠?k=4,由l1⊥l2,得2k+2=0?k=-1. 答案 4 -1 7.(2012廣東卷)在平面直角坐標(biāo)系xOy中,曲線C1和C2的參數(shù)方程分別為(t為參數(shù))和(θ為參數(shù)),則曲線C1與C2的交點坐標(biāo)為________. 解析 曲線C1的普通方程為y2=x(y≥0), 曲線C2的普通方程為x2+y2=2. 由 解得即交點坐

36、標(biāo)為(1,1). 答案 (1,1) 8.直角坐標(biāo)系xOy中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點A,B分別在曲線C1:(θ為參數(shù))和曲線C2:ρ=1上,則|AB|的最小值為________. 解析 消掉參數(shù)θ,得到關(guān)于x、y的一般方程C1:(x-3)2+y2=1,表示以(3,0)為圓心,以1為半徑的圓;C2:x2+y2=1,表示的是以原點為圓心的單位圓,|AB|的最小值為3-1-1=1. 答案 1 9.(2012湖南卷)在極坐標(biāo)系中,曲線C1:ρ(cos θ+sin θ)=1與曲線C2:ρ=a(a>0)的一個交點在極軸上,則a=______. 解析 ρ(cos θ+s

37、in θ)=1,即ρcos θ+ρsin θ=1對應(yīng)的普通方程為x+y-1=0,ρ=a(a>0)對應(yīng)的普通方程為x2+y2=a2.在x+y-1=0中,令y=0,得x=.將代入x2+y2=a2得a=. 答案  二、解答題 10.(2013新課標(biāo)全國Ⅰ卷)已知曲線C1的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sin θ. (1)把C1的參數(shù)方程化為極坐標(biāo)方程; (2)求C1與C2交點的極坐標(biāo)(ρ≥0,0≤θ<2π). 解 (1)將消去參數(shù)t, 化為普通方程(x-4)2+(y-5)2=25, 即C1:x2+y2-8x-10

38、y+16=0. 將代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C1的極坐標(biāo)方程為 ρ2-8ρcos θ-10ρsin θ+16=0. (2)C2的普通方程為x2+y2-2y=0. 由 解得或 所以C1與C2交點的極坐標(biāo)分別為,. 11.(2013新課標(biāo)全國Ⅱ卷)已知動點P、Q都在曲線C:(t為參數(shù))上,對應(yīng)參數(shù)分別為t=α與t=2α(0<α<2π),M為PQ的中點. (1)求M的軌跡的參數(shù)方程; (2)將M到坐標(biāo)原點的距離d表示為α的函數(shù),并判斷M的軌跡是否過坐標(biāo)原點. 解 (1)依題意有P(2cos α,2sin α)

39、,Q(2cos 2α,2sin 2α), 因此M(cos α+cos 2α,sin α+sin 2α). M的軌跡的參數(shù)方程為(α為參數(shù),0<α<2π). (2)M點到坐標(biāo)原點的距離d==(0<α<2π). 當(dāng)α=π時,d=0,故M的軌跡通過坐標(biāo)原點. 12.(2012新課標(biāo)全國卷)已知曲線C1的參數(shù)方程是(φ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=2,正方形ABCD的頂點都在C2上,且A,B,C,D依逆時針次序排列,點A的極坐標(biāo)為. (1)求點A,B,C,D的直角坐標(biāo); (2)設(shè)P為C1上任意一點,求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍. 解 (1)由已知可得A, B, C, D, 即A(1,),B(-,1),C(-1,-),D(,-1). (2)設(shè)P(2cos φ,3sin φ), 令S=|PA|2+|PB|2+|PC|2+|PD|2, 則S=16cos2φ+36sin2φ+16=32+20sin2φ. 因為0≤sin2φ≤1, 所以S的取值范圍是[32,52].

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!