《精編高中數(shù)學(xué) 第一章交集與并集參考教案 北師大版必修1》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《精編高中數(shù)學(xué) 第一章交集與并集參考教案 北師大版必修1(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、精編北師大版數(shù)學(xué)資料
交集與并集
教學(xué)目的:
(1)理解兩個(gè)集合的并集與交集的的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集與交集;
(2))能用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,體會(huì)直觀(guān)圖示對(duì)理解抽象概念的作用。
課 型:新授課
教學(xué)重點(diǎn):集合的交集與并集的概念;
教學(xué)難點(diǎn):集合的交集與并集 “是什么”,“為什么”,“怎樣做”;
教學(xué)過(guò)程:
一、 引入課題
我們兩個(gè)實(shí)數(shù)除了可以比較大小外,還可以進(jìn)行加法運(yùn)算,類(lèi)比實(shí)數(shù)的加法運(yùn)算,兩個(gè)集合是否也可以“相加”呢?
思考(P9思考題),引入并集概念。
二、 新課教學(xué)
1、 并集
A∪B
A
2、
B
A
?
一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱(chēng)為集合A與B的并集(Union)
記作:A∪B 讀作:“A并B”
即: A∪B={x|x∈A,或x∈B}
Venn圖表示:
說(shuō)明:兩個(gè)集合求并集,結(jié)果還是一個(gè)集合,是由集合A與B的所有元素組成的集合(重復(fù)元素只看成一個(gè)元素)。
例題1求集合A與B的并集
① A={6,8,10,12} B={3,6,9,12}
② A={x|-1≤x≤2} B={x|0≤x≤3}
(過(guò)度)問(wèn)題:在上圖中我們除了研究集合A與B的并集外,它們的公共部分(即問(wèn)號(hào)部分)還應(yīng)是我們所關(guān)心的,我們稱(chēng)其為集合A與
3、B的交集。
2、交集
一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。
記作:A∩B 讀作:“A交B”
即: A∩B={x|∈A,且x∈B}
交集的Venn圖表示
說(shuō)明:兩個(gè)集合求交集,結(jié)果還是一個(gè)集合,是由集合A與B的公共元素組成的集合。
例題2求集合A與B的交集
③ A={6,8,10,12} B={3,6,9,12}
④ A={x|-1≤x≤2} B={x|0≤x≤3}
拓展:求下列各圖中集合A與B的并集與交集(用彩筆圖出)
A B
A(B)
A
B
B
A
B A
4、
說(shuō)明:當(dāng)兩個(gè)集合沒(méi)有公共元素時(shí),兩個(gè)集合的交集是空集,而不能說(shuō)兩個(gè)集合沒(méi)有交集
3、例題講解
例3(P12例1):理解所給集合的含義,可借助venn圖分析
例4 P12例2):先“化簡(jiǎn)”所給集合,搞清楚各自所含元素后,再進(jìn)行運(yùn)算。
4、 集合基本運(yùn)算的一些結(jié)論:
A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A
AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A
若A∩B=A,則AB,反之也成立
若A∪B=B,則AB,反之也成立
若x∈(A∩B),則x∈A且x∈B
若x∈(A∪B),則x∈A,或x∈B
三、 課堂練習(xí)(P12練習(xí))
四、 歸納小
5、結(jié)
五、 作業(yè)布置
1、 書(shū)面作業(yè):P13習(xí)題1.1,第6-12題
補(bǔ)充:
(1)設(shè)A={奇數(shù)}、B={偶數(shù)},則A∩Z=A,B∩Z=B,A∩B=
(2)設(shè)A={奇數(shù)}、B={偶數(shù)},則A∪Z=Z,B∪Z=Z,A∪B=Z
2、 提高內(nèi)容:
(1) 已知X={x|x2+px+q=0,p2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且
,試求p、q;
(2) 集合A={x|x2+px-2=0},B={x|x2-x+q=0},若AB={-2,0,1},求p、q;
(3) A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且AB ={3,7},求B