《精編高中數(shù)學(xué) 2.5夾角的計(jì)算練習(xí) 北師大版選修21》由會(huì)員分享,可在線閱讀,更多相關(guān)《精編高中數(shù)學(xué) 2.5夾角的計(jì)算練習(xí) 北師大版選修21(16頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、精編北師大版數(shù)學(xué)資料
第二章 2.5夾角的計(jì)算
一、選擇題
1.平面α的一個(gè)法向量為n1=(4,3,0),平面β的一個(gè)法向量為n2=(0,-3,4),則平面α與平面β夾角的余弦值為( )
A.- B.
C. D.以上都不對(duì)
[答案] B
[解析] cos〈n1,n2〉==-,∴平面α與平面β夾角的余弦值為.
2.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=AA1=2,AD=1,E為CC1的中點(diǎn),則A1E與BD所成角的余弦值為( )
A. B.
C. D.
[答案] B
[解析] 分別以DA、DC、DD1為x、y、z軸建立空間直角坐標(biāo)
2、系,則A1(1,0,2),E(0,2,1),B(1,2,0),D(0,0,0),
∴=(-1,2,-1),=(-1,-2,0).
∴|cos〈,〉|=
||==.
3.已知E,F(xiàn)分別是棱長(zhǎng)為1的正方體ABCD-A1B1C1D1的棱BC,CC1的中點(diǎn),則截面AEFD1與底面ABCD所成二面角的正弦值是( )
A. B.
C. D.
[答案] C
[解析] 以D為坐標(biāo)原點(diǎn),以DA、DC、DD1分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,如圖,則A(1,0,0),E(,1,0),D1(0,0,1),
∴=(-1,0,1),=(-,1,0).
設(shè)平面AEFD1的法向量為n=(x,y
3、,z)則
? ∴x=2y=z.
取y=1,則n=(2,1,2),
而平面ABCD的一個(gè)法向量為u=(0,0,1),
∴cos〈n,u〉=,∴sin〈n,u〉=.
4.如圖,四面體P—ABC中,PC⊥平面ABC,AB=BC=CA=PC,那么二面角B—AP—C的余弦值為( )
A. B.
C. D.
[答案] C
[解析] 如圖,作BD⊥AP于D,作CE⊥AP于E,與的夾角恰是二面角的平面角,設(shè)AB=1,則易得CE=,EP=,PA=PB=,AB=1,可以求得BD=,ED=.
∵=++,∴=+++2·+2·+2·.∴·=-.
∴co
4、s〈,〉=-.即cos〈,〉=.
另解:如圖建立空間直角坐標(biāo)系,不妨設(shè)AB=BC=CD=PC=2.則A(2,0,0),C(0,0,0),B(1,,0),P(0,0,2)
設(shè)平面PAB的法向量n·=0,即不妨取n=(3,,3),又平面PAC的法向理為n0=(0,1,0)∴cos θ===.
5.直三棱柱A1B1C1-ABC中,∠ACB=90°,D1,E1分別為A1B1、A1C1的中點(diǎn),若BC=CA=CC1,則BD1與AE1所成角的余弦值為( )
A. B.
C. D.
[答案] C
[解析] 如圖所示,取直線CA、CB、CC1分別為x軸、y軸、z軸建立直角坐
5、標(biāo)系,
設(shè)||=a,則A(a,0,0),B(0,a,0),E1(,0,a),D1(,,a)∴=(-,0,a),=(,-,a)
∴·=a2,||=a,||=A.
∴cos〈,〉==,故選C.
6.在正方體ABCD-A1B1C1D1中,若F、G分別是棱AB、CC1的中點(diǎn),則直線FG與平面A1ACC1所成角的正弦值等于( )
A. B.
C. D.
[答案] D
[解析] 解法一:過(guò)F作BD的平行線交AC于M,則∠MGF即為所求.
設(shè)正方體棱長(zhǎng)為1,MF=,GF=,
∴sin∠MGF=.
解法二:分別以AB、AD、AA1為x軸、y軸、z軸建立空間直角坐標(biāo)系,設(shè)正
6、方體棱長(zhǎng)為1,則易知平面ACC1A1的一個(gè)法向量為n=(-1,1,0),
∵F(,0,0),G(1,1,),∴=,
設(shè)直線FG與平面A1ACC1所成角θ,
則sinθ=|cos〈n,〉|===.
二、填空題
7.如圖所示,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,則異面直線A1B與AC夾角的余弦值為_(kāi)_______________.
[答案]
[解析] 根據(jù)題意,以點(diǎn)C為坐標(biāo)原點(diǎn),分別以CA、CB、CC1所在直線為x軸、y軸、z軸,建立空間直角坐標(biāo)系,則C(0,0,0),A(1,0,0),B(0,1,0),A1(1,0,2).
7、于是得=(-1,1,-2),=(-1,0,0),所以cos〈,〉===,所以異面直線A1B與AC夾角的余弦值為.
8.已知正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都相等,D是A1C1的中點(diǎn),則直線AD與平面B1DC所成的角的正弦值為_(kāi)_______.
[答案]
[解析] 不妨設(shè)正三棱柱ABC-A1B1C1的棱長(zhǎng)為2,建立如右圖所示空間直角坐標(biāo)系.則C(0,0,0),A(,-1,0),B1(,1,2),D,
則=,=(,1,2),設(shè)平面B1DC的法向量為
n=(x,y,1),由,解得n=(-,1,1).
又∵=,
∴sinθ=|cos〈,n〉|=.
三、解答題
9.(201
8、4·遼寧理)如圖,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°、E,F(xiàn)分別為AC、DC的中點(diǎn).
(1)求證:EF⊥BC;
(2)求二面角E-BF-C的正弦值.
[解析] (1)方法一:過(guò)E作EO⊥BC,垂足為O,連接OF,由△ABC≌△DBC可證出△EOC≌△FOC,
圖1
所以∠EOC=∠FOC=,即FO⊥BC.
又EO⊥BC,因此BC⊥平面EFO.
又EF?平面EFO,所以EF⊥BC.
方法二:由題意,以B為坐標(biāo)原點(diǎn),在平面DBC內(nèi)過(guò)B作垂直BC的直線為x軸,BC所在直線為y軸,在平面ABC內(nèi)過(guò)B作垂直
9、BC的直線為z軸,建立如圖所示空間直角坐標(biāo)系,易得B(0,0,0),A(0,-1,),D(,-1,0),C(0,2,0),因而E(0,,),F(xiàn)(,,0),所以=(,0,-),=(0,2,0),因此·=0,
從而⊥,所以EF⊥BC.
(2)方法一:在圖1中過(guò)O作OG⊥BF,垂足為G連EG,由平面ABC⊥平面BDC,從而EO⊥平面BDC,
又OG⊥BF,由三垂線定理知EG⊥BF.
因此∠EGO為二面角E-BF-C的平面角,
在△EOC中,EO=EC=BC·cos30°=,
由△BGO∽△BFC知OG=·FC=.
因此tan∠EGO==2,從而s
10、in∠EGO=.
即二面角的正弦值為.
方法二:在圖(2)中平面BFC的一個(gè)法向量為n1=(0,0,1),設(shè)平面BEF的法向量n2=(x,y,z)
圖2
又=(,,0),=(0,,).
由得其中一個(gè)n2=(1,-,1)
設(shè)二面角E-BF-C的大小為θ,由題意知θ為銳角,則cosθ=|cos<n1,n2>|=||=.
因此sinθ==.
即所求二面角正弦值為.
10.(2014·陜西理)四面體ABCD及其三視圖如圖所示,過(guò)棱AB的中點(diǎn)E作平行于AD、BC的平面分別交四面體的棱BD、DC、CA于點(diǎn)F、G、H.
(1)證明:四邊形EFGH是矩形;
11、(2)求直線AB與平面EFGH夾角θ的正弦值.
[解析] (1)由該四面體的三視圖可知,
BD⊥DC,BD⊥AD,AD⊥DC,BD=DC=2,AD=1,
由題設(shè),BC∥平面EFGH,平面EFGH∩平面ABC=EH,
∴BC∥FG,BC∥EH,∴FG∥EG.
同理EF∥AD,HG∥AD,∴EF∥HG,
∴四邊形EFGH是平行四邊形.
又∵AD⊥DC,AD⊥BD.
∴AD⊥平面BDC,∴AD⊥BC,∴EF⊥FG,
∴四邊形EFGH是矩形.
(2)解法一:如圖,以D為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)
系,則D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),=(
12、0,0,1),=(-2,2,0),=(-2,0,1).
設(shè)平面EFGH的法向量n=(x,y,z),
∵EF∥AD,F(xiàn)G∥BC,
∴n·=0,n·=0,
得取n=(1,1,0),
∴sinθ=|cos〈,n〉|=||==.
解法二:如圖,以D為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,
則D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),
∵E是AB的中點(diǎn),
∴F,G分別為BD,DC的中點(diǎn),得
E(1,0,),F(xiàn)(1,0,0),G(0,1,0).
∴=(0,0,),=(-1,1,0),=(-2,0,1).
設(shè)平面EFGH的法向量n=(x,y,z
13、),
則n·=0,n·=0,
得取n=(1,1,0),
∴sinθ=|cos〈,n〉|=||==.
一、選擇題
1.若平面α的一個(gè)法向量n=(4,1,1),直線l的方向向量a=(-2,-3,3),則l與α夾角的余弦值為( )
A.- B.
C.- D.
[答案] D
[解析] cos〈a,n〉===.
∴l(xiāng)與α夾角的余弦值為=.
2.在三棱柱ABC-A1B1C1中,各棱長(zhǎng)相等,側(cè)棱垂直于底面,點(diǎn)D是側(cè)面BB1C1C的中心,則AD與平面BB1C1C所成角的大小是( )
A.30° B.45°
C.60° D.90
14、°
[答案] C
[解析] 如圖,取BC的中點(diǎn)E,連結(jié)DE、AE、AD,依題意知三棱柱為正三棱柱,易得AE⊥平面BB1C1C,故∠ADE為AD與平面BB1C1C所成的角.設(shè)各棱長(zhǎng)為1,
則AE=,DE=,∴tan∠ADE===,
∴∠ADE=60°,故選C.
3.在長(zhǎng)方體ABCD-A1B1C1D1中,M、N分別是棱BB1、B1C1的中點(diǎn),若∠CMN=90°,則異面直線AD1與DM的夾角為( )
A.30° B.45°
C.60° D.90°
[答案] D
[解析] 如圖,
連結(jié)DM,BC1,則MC為
15、DM在平面B1C內(nèi)的投影.
又因?yàn)镃M⊥MN,所以DM⊥MN.
因?yàn)镸N∥BC1∥AD1,
所以DM⊥AD1,即AD1與DM的夾角為90°.
4.如圖,在棱長(zhǎng)都相等的四面體ABCD中,E,F(xiàn)分別為棱AD、BC的中點(diǎn),連接AF,CE,則直線AF與CE所成的角的余弦值為( )
A. B.
C. D.
[答案] A
[解析] 設(shè)該四面體的棱長(zhǎng)為1,則||=||=,
||=||=||=1.
所以·=(+)·(+)
=(+)·(2-)
=(·2-·+2·-·)
=(1-+2-)=.
所以co
16、s〈,〉==.
二、填空題
5.如圖,在正三棱柱ABC-A1B1C1中,已知AB=1,點(diǎn)D在棱BB1上,且BD=1,則AD與平面AA1C1C所成角的正弦值為_(kāi)_______________.
[答案]
[解析] 解法一:取AC、A1C1的中點(diǎn)M、M1,連結(jié)MM1、BM.過(guò)D作DN∥BM,則容易證明DN⊥平面AA1C1C.連結(jié)AN,則∠DAN就是AD與平面AA1C1C所成的角.
在Rt△DAN中,
sin∠DAN===.
解法二:取AC、A1C1中點(diǎn)O、E,則OB⊥AC,OE⊥平面ABC,以O(shè)為原點(diǎn)OA、OB、OE為x軸、y軸、z軸建立空間直角坐標(biāo)系,
在正三角形ABC
17、中,BM=AB=,
∴A,B,D,
∴=,
又平面AA1C1C的法向量為e=(0,1,0),
設(shè)直線AD與平面AA1C1C所成角為θ,則
sinθ=|cos〈,e〉|==.
解法三:設(shè)=a,=b,=c,
由條件知a·b=,a·c=0,b·c=0,
又=-=c-b,
平面AA1C1C的法向量=(a+b).
設(shè)直線AD與平面AA1C1C成角為θ,則
sinθ=|cos〈,〉|=,
∵·=(c-b)·(a+b)
=a·c-a·b+b·c-|b|2=-.
||2=(c-b)2=|c|2+|b|2
18、-2b·c=2,
∴||=,
||2=(a+b)2=(|a|2+|b|2+2a·b)=,
∴||=,∴sinθ=.
6.在正方體ABCD-A1B1C1D1中,則A1B與平面A1B1CD所成角的大小為_(kāi)_____________.
[答案] 30°
[解析] 方法1:連結(jié)BC1,設(shè)與B1C交于O點(diǎn),連結(jié)A1O.
∵BC1⊥B1C,A1B1⊥BC1,A1B1∩B1C=B1.
∴BC1⊥平面A1B1C,
∴A1B在平面A1B1CD內(nèi)的射影為A1O.∴∠OA1B就是A1B與平面A1B1CD所成的角,
設(shè)正方體的棱長(zhǎng)為1.
在Rt△A1OB中,A1
19、B=,BO=,
∴sin∠OA1B===.
∴∠OA1B=30°.
即A1B與平面A1B1CD所成的角為30°.
方法2:以D為原點(diǎn),DA,DC,DD1分別為x軸,y軸,z軸,建立如圖所示的空間直角坐標(biāo)系,設(shè)正方體的棱長(zhǎng)為1,則A1(1,0,1),C(0,1,0).
∴=(1,0,1),=(0,1,0).
設(shè)平面A1B1CD的一個(gè)法向量為n=(x,y,z)
則?令z=-1得x=1.
∴n=(1,0,-1),又B(1,1,0),∴=(0,1,-1),
cos〈n,〉===.
∴〈n,〉=60°,
所以A1B與平面A1B1CD所成的角為30
20、76;.
三、解答題
7.(2014·新課標(biāo)Ⅰ理)如圖三棱柱ABC-A1B1C1中,側(cè)面BB1C1C為菱形,AB⊥B1C.
(1) 證明:AC=AB1;
(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.
[解析] (1)連結(jié)BC,BC1交BC于點(diǎn)O,連結(jié)AO,因?yàn)閭?cè)面BB1C1C為菱形,所以B1C⊥BC1,且O為B1C及BC1的中點(diǎn).
又AB⊥B1C,所以B1C1⊥平面ABO,由于AO?平面ABO,故B1C⊥AO.又B1O=CO,故AC=AB1.
(2)因?yàn)锳C⊥AB1,且O為B1C的中點(diǎn),所以AO=CO
又因?yàn)?/p>
21、AB=BC,所以△BOA≌△BOC,故OA⊥OB,從而OA,OB,OB1兩兩互相垂直.
以O(shè)為坐標(biāo)原點(diǎn),的方向?yàn)閤軸正方向,|OB為單位長(zhǎng),建立如圖所示的空間直角坐標(biāo)系O-xyz.
因?yàn)椤螩BB1=60°,所以△CBB1為等邊三角形,又AB=BC,則A(0,0,),B(1,0,0),B1(0,,0),C(0,-,0).=(0,,-),==(1,0,-),==(-1,-,0).
設(shè)n=(x,y,z)是平面AA1B1的法向量,則
即
所以可取n=(1,,)
設(shè)m是平面A1B1C1的法向量,則
同理可取m=(1,-,).
則cos(n,m)==.
所以二面角A-A1B
22、1-C1的余弦值為.
8.如圖,在三棱錐P-ABC中,AB=AC,D為BC的中點(diǎn),PO⊥平面ABC,垂足O落在線段AD上,已知BC=8,PO=4,AO=3,OD=2.
(1)證明:AP⊥BC;
(2)在線段AP上是否存在點(diǎn)M,使得二面角A-MC-B為直二面角?若存在,求出AM的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
[解析] 方法一:(1)證明:如右圖,以O(shè)為原點(diǎn),以射線OD為y軸的正半軸,射線OP為z軸的正半軸,建立空間直角坐標(biāo)系O-xyz.
則O(0,0,0),A(0,-3,0),B(4,2,0),C(-4,2,0),P(0,0,4),
=(0,3,4),=(-8,0,0),由此
23、可得·=0,所以⊥,即AP⊥BC.
(2)解:假設(shè)存在滿足題意的M,設(shè)=λ,λ≠1,則=λ(0,-3,-4).
=+=+λ
=(-4,-2,4)+λ(0,-3,-4)
=(-4,-2-3λ,4-4λ),
=(-4,5,0).
設(shè)平面BMC的法向量n1=(x1,y1,z1),
平面APC的法向量n2=(x2,y2,z2).
由
得
即可取n1=(0,1,).
由即得可取n2=(5,4,-3)
由n1·n2=0,得4-3·=0,
解得λ=,故AM=3.
綜上所述,存在點(diǎn)M符合題意,AM=3.
方法二:(1)證明:由AB=AC,D是BC的中
24、點(diǎn),得AD⊥BC.
又PO⊥平面ABC,所以PO⊥BC.
因?yàn)镻O∩AD=O,所以BC⊥平面PAD,
故BC⊥PA.
(2)解:如右圖,在平面PAB內(nèi)作BM⊥PA于M,連接CM.
由(1)知AP⊥BC,得AP⊥平面BMC.
又AP平面APC,所以平面BMC⊥平面APC.
在Rt△ADB中,AB2=AD2+BD2=(AO+OD)2+(BC)2=41,得AB=.
在Rt△POD中,PD2=PO2+OD2,
在Rt△PDB中,PB2=PD2+BD2,
所以PB2=PO2+OD2+DB2=36,得PB=6.
在Rt△POA中,PA2=AO2+OP2=25,得PA=5.
又cos∠BPA==,
從而PM=PBcos∠BPA=2,所以AM=PA-PM=3.
綜上所述,存在點(diǎn)M符合題意,AM=3.