《同步優(yōu)化探究文數(shù)北師大版練習:第三章 第二節(jié) 同角三角函數(shù)基本關系式與誘導公式 Word版含解析》由會員分享,可在線閱讀,更多相關《同步優(yōu)化探究文數(shù)北師大版練習:第三章 第二節(jié) 同角三角函數(shù)基本關系式與誘導公式 Word版含解析(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、課時作業(yè)
A組——基礎對點練
1.若cos α=,α∈,則tan α等于( )
A.- B.
C.-2 D.2
解析:∵α∈,
∴sin α=-=-=-,
∴tan α==-2.
答案:C
2.sin(-600)的值為( )
A. B.
C.1 D.
解析:sin(-600)=sin(-720+120)=sin 120=.
答案:A
3.已知sin=,那么cos α=( )
A.- B.-
C. D.
解析:∵sin=sin=cos α,
∴cos α=.故選C.
答案:C
4.已知角α(0≤α<360)終邊上一點的坐標為(
2、sin 235,cos 235),則α=( )
A. 215 B.225
C.235 D.245
解析:由誘導公式可得sin 235=-sin 55<0,cos 235=-cos 55<0,角α終邊上一點的橫坐標、縱坐標均為負值,故該點在第三象限,由三角函數(shù)定義得sin α=cos 235=-cos 55=sin(270-55)=sin 215,又0≤α<360,所以角α的值是215,故選A.
答案:A
5.已知sin α-cos α=,α∈(0,π),則sin 2α=( )
A.-1 B.-
C. D.1
解析:∵sin α-cos α=,∴(sin α-cos
3、α)2=1
-2sin αcos α=2,
∴2sin αcos α=-1,∴sin 2α=-1.故選A.
答案:A
6.設a=sin 33,b=cos 55,c=tan 35,則( )
A.a(chǎn)>b>c B.b>c>a
C.c>b>a D.c>a>b
解析:∵b=cos 55=sin 35>sin 33=a,
∴b>a.
又∵c=tan 35=>sin 35=cos 55=b,
∴c>b.∴c>b>a.故選C.
答案:C
7.已知2tan αsin α=3,-<α<0,則sinα=( )
A. B.-
C. D.-
解析:因為2tan αsin α=3
4、,所以=3,
所以2sin2α=3cos α,即2-2cos2α=3cos α,所以cos α=或cos α=-2(舍去),又-<α<0,所以sin α=-.
答案:B
8.若=,則tan θ=( )
A.1 B.-1
C.3 D.-3
解析:原式可化為=,分子、分母同除以cos θ得=,求得tan θ=-3,故選D.
答案:D
9.已知sin θ+cos θ=,則sin θ-cos θ的值為( )
A. B.-
C. D.-
解析:∵sin θ+cos θ=,∴1+2sin θcos θ =,
∴2sin θcos θ=.又0<θ<.
故sin θ-co
5、s θ=-
=-=-,故選B.
答案:B
10.已知函數(shù)f(x)=asin(πx+α)+bcos(πx+β),且f(4)=3,則f(2 017)的值為( )
A.-1 B.1
C.3 D.-3
解析:∵f(4)=asin(4π+α)+bcos(4π+β)=asin α+bcos β=3,∴f(2 017)=asin(2 017π+α)+bcos(2 017π+β)=asin(π+α)+bcos(π+β)=-asin α-bcos β=-(asin α+bcos β)=-3.
答案:D
11.=________.
解析:原式=
=
==.
答案:
12.化簡:si
6、ncos=_________________________________.
解析:sincos=(-cos α)(-sin α)=-cos2α.
答案:-cos2α
13.若角θ滿足=3,求tan θ的值.
解析:由=3,得=3,等式左邊分子分母同時除以cos θ,得=3,解得tan θ=1.
B組——能力提升練
1.若=2,則cos α-3sin α=( )
A.-3 B.3
C.- D.
解析:∵=2,∴cos α=2sin α-1,又sin2α+cos2α=1,∴sin2α+(2sin α-1)2=1?5sin2α-4sin α=0?sin α=或sinα=0
7、(舍去),∴cos α-3sin α=-sin α-1=-.故選C.
答案:C
2.已知傾斜角為α的直線l與直線x+2y-3=0垂直,則cos的值為( )
A. B.-
C.2 D.-
解析:由題意可得tan α=2,
所以cos=-sin 2α
=-=-=-.故選B.
答案:B
3.(2018長沙模擬)若sin θ,cos θ是方程 4x2+2mx+m=0的兩根,則m的值為( )
A.1+ B.1-
C.1 D.-1-
解析:由題意知,sin θ+cos θ=-,sin θcos θ=.∵(sin θ+cos θ)2=1+2sin θcos θ,∴=1+,
8、解得m=1,又Δ=4m2-16m≥0,∴m≤0或m≥4,∴m=1-.
答案:B
4.已知t an θ=2,則sin2θ+sin θcos θ-2cos2θ=( )
A.- B.
C.- D.
解析:sin2θ+sin θcos θ-2cos2θ
==,
把tan θ=2代入得,原式==.故選D.
答案:D
5.若θ∈,sin θcos θ=,則sin θ=( )
A. B.
C. D.
解析:∵sin θcos θ=,∴(sin θ+cos θ)2=1+2sin θcos θ=,(sin θ-cos θ)2=1-2sin θcos θ=,∵θ∈,∴sin θ
9、+cos θ=?、?, sin θ-cos θ=?、?,聯(lián)立①②得,sin θ=.
答案:D
6.已知傾斜角為θ的直線與直線x-3y+1=0垂直,則=( )
A. B.-
C. D.-
解析:直線x-3y+1=0的斜率為,因此與此直線垂直的直線的斜率k=-3,∴tan θ=-3,
∴==,把tan θ=-3代入得,原式==.
答案:C
7.4sin 80-=( )
A. B.-
C. D.2-3
解析:4sin 80-====-,故選B.
答案:B
8.設函數(shù)f(x)(x∈R)滿足f(x+π)=f(x)+sin x,當0≤x<π時,f(x)=0,則f=( )
10、
A. B.
C.0 D.-
解析:由f(x+π)=f(x)+sin x,得f(x+2π)=f(x+π)+sin(x+π)=f(x)+sinx-sin x=f(x),
所以f=f=f=f
=f+sinπ.因為當0≤x<π時,f(x)=0,所以f=0+=.
答案:A
9.已知銳角θ滿足sin=,則cos的值為( )
A.- B.
C.- D.
解析:因為sin=,由θ∈,可得+∈,所以cos=,則sin=,所以cos=cos=-sin=-.故選C.
答案:C
10.tan θ和tan是方程x2+px+q=0的兩根,則p,q之間的關系是( )
A.p+q+1=
11、0 B.p-q-1=0
C.p-q+1=0 D.p+q-1=0
解析:依題意有p=-,q=tan θtan,化簡得p=-,q=,故p-q=-1,即p-q+1=0.故選C.
答案:C
11.已知α為銳角,若sin 2α+cos 2α=-,則tan α=( )
A.3 B.2
C. D.
解析:因為sin 2α+cos 2α=-,所以兩邊平方可得1+2sin 2αcos 2α=,即sin 2αcos 2α=-,所以聯(lián)立sin 2α+cos 2α=-,可得sin 2α=,cos 2α=-,所以tan 2α=-,再由tan 2α=,得tan α=3或tan α=-,因為α為銳角
12、,所以tan α>0,所以tan α=3,故選A.
答案:A
12.已知sin α+2cos α=0,則2sin αcos α-cos2α的值是________.
解析:由sin α+2cos α=0,得tan α=-2.
所以2sin αcos α-cos2α====-1.
答案:-1
13.(2018泰安模擬)設θ為第二象限角,若tan=,求sin θ+cos θ的值.
解析:法一:由tan=,得=,解得tan θ=-,則cos θ=-3sin θ.由sin2θ+cos2θ=1,得10sin2θ=1.∵θ為第二象限角,∴sin θ=,cos θ=-,∴sin θ+cos θ=-.
法二:由于θ在第二象限,且tan=,
因而sin=-,
因而sin θ+cos θ=sin=-.