《盈虧問(wèn)題習(xí)題》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《盈虧問(wèn)題習(xí)題(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、精品文檔
例 1 三年級(jí)一班少先隊(duì)員參加學(xué)校搬磚勞動(dòng) . 如果每人搬 4 塊磚,還剩 7 塊;如果每人搬 5
塊,則少 2 塊磚 . 這個(gè)班少先隊(duì)有幾個(gè)人?要搬的磚共有多少塊?
分析 比較兩種搬磚法中各個(gè)量之間的關(guān)系:
每人搬 4 塊, 還剩 7 塊磚; 每人搬 5 塊, 就少 2 塊 . 這兩次搬磚, 每人相差 5-4=1 (塊) 。
第一種余 7 塊,第二種少 2 塊,那么第二次與第一次總共相差磚數(shù): 7+2=9(塊)
每人相差1塊,結(jié)果總數(shù)就相差 9塊,所以有少先隊(duì)員 9+1=9 (人)。
共有科:4X9+7=43 (塊)。
解:(7+2) + (5-4) =9 (人
2、)
4X9+7=43 (塊)或 5 X9-2=43 (塊)
答:共有少先隊(duì)員 9 人,磚的總數(shù)是 43 塊。
如果把例 1 中的 “少 2塊磚 ”改為 “多 1 塊磚 ”,你能計(jì)算出有多少少先隊(duì)員,有多少塊磚
嗎?
由本題可見(jiàn), 解這類(lèi)問(wèn)題的思路是把盈余數(shù)與不足數(shù)之和看作采用兩種不同搬法產(chǎn)生的
總差數(shù),被每人搬磚的差即單位差除,就可得出單位的個(gè)數(shù),對(duì)這題來(lái)說(shuō)就是搬磚的人數(shù) .
例 2 媽媽買(mǎi)回一筐蘋(píng)果,按計(jì)劃吃的天數(shù)算了一下,如果每天吃 4 個(gè),要多出 48個(gè)蘋(píng)
果;如果每天吃 6 個(gè),則又少 8個(gè)蘋(píng)果 .那么媽媽買(mǎi)回的蘋(píng)果有多少個(gè)?計(jì)劃吃多少天?
分析 題中告訴我們每天吃
3、4 個(gè),多出 48 個(gè)蘋(píng)果;每天吃 6 個(gè),少 8 個(gè)蘋(píng)果 . 觀察每天
吃的個(gè)數(shù)與蘋(píng)果剩余個(gè)數(shù)的變化就能看出, 由每天吃 4 個(gè)變?yōu)槊刻斐?6 個(gè), 也就是每天多吃
2個(gè)時(shí),蘋(píng)果從多出 48個(gè)到少8個(gè),也就是所需的蘋(píng)果總數(shù)要相差 48+ 8=56 (個(gè)).從這
個(gè)對(duì)應(yīng)的變化中可以看出,只要求 56 里面含有多少個(gè) 2,就是所求的計(jì)劃吃的天數(shù);有了
計(jì)劃吃的天數(shù),就不難求出共有多少個(gè)蘋(píng)果了。
解:(48+8) + (6-4)
=56登
=28(天)
6X28-8=160 (個(gè))或 4 X28+48=160 (個(gè))
答:媽媽買(mǎi)回蘋(píng)果 160 個(gè),計(jì)劃吃 28 天。
如果條件
4、“每天吃 4 個(gè),多出 48 個(gè)”不變,另一條件改為 “每天吃 6個(gè),則還多出 8個(gè)”, 問(wèn)蘋(píng)果應(yīng)該有多少個(gè),計(jì)劃吃多少天?
分析 改題后每天吃的蘋(píng)果個(gè)數(shù)沒(méi)有變,也就是說(shuō)每天多吃 2 個(gè)條件沒(méi)變,蘋(píng)果總數(shù)由
原來(lái)多出 48 個(gè)變?yōu)槎喑?8 個(gè) . 那么所需蘋(píng)果總數(shù)要相差: 48-8=40 (個(gè))
解:(48-8) + (6-4)
=40登
=20 (天)
4X20 + 48=128 (個(gè))或 6 X20+8=128 (個(gè))
答:有蘋(píng)果 128 個(gè),計(jì)劃吃 20 天 .
例 3 學(xué)校規(guī)定上午 8 時(shí)到校,小明去上學(xué),如果每分種走 60米,可提早 10 分鐘到校;
如果每分鐘走
5、50 米,可提早 8 分鐘到校,求小明幾時(shí)幾分離家剛好 8 時(shí)到校?由家到學(xué)校
的路程是多少?
分析小明每分鐘走60米,可提早10分鐘到校,即到校后還可多走 60X10=600 (米); 如果每分鐘走50米,可提早8分鐘到校,即到校后還可多走 50X8=400 (米),第一種情況 比第二種情況每分鐘多走 60-50 =10 (米),就可以多走600-400=200 (米),從而可以求出 小明由家到校所需時(shí)間。
解:①10分種走多少米? 60 M0= 600 (米)
②8分種走多少米? 50X8=400 (米)
③需要多長(zhǎng)時(shí)間?
(600+400) + (60-50 ) =20 (分
6、鐘)
④由家到校的路程:
60 X (20-10) =600 (米)
或:50 X (20-8 ) =600 (米)
答:小明 7 點(diǎn) 40 分離家去上學(xué)剛好 8 時(shí)到校;小明的家離校有 600 米。
例 4 學(xué)校為新生分配宿舍 . 每個(gè)房間住 3 人, 則多出 23人; 每個(gè)房間住 5人, 則空出 3
個(gè)房間 . 問(wèn)宿舍有多少間?新生有多少人?
分析 每個(gè)房間住 3 人,則多出 23 人, 每個(gè)房間住 5 人,就空出 3 個(gè)房間,這 3 個(gè)房間
如果住滿(mǎn)人應(yīng)該是 5X 3= 15(人).由此可見(jiàn),每一個(gè)房間增加 5-3=2 (人).兩次安排人數(shù)
總共相差23+15=38 (
7、人),因此,房間總數(shù)是:
38+2=19 (間),學(xué)生總數(shù)是: 3X 19+23=80 (人),或者 5X19-5X3=80 (人)。
解:(23+5X3) + (5-3)
=(23+15) +2
= 38 + 2
=19 (間)
3X 19+23=80 (人)或 5X19-5X3=80 (人)。
答:有 19 間宿舍,新生有 80 人。
例 5 少先隊(duì)員去植樹(shù) . 如果每人種 5 棵,還有 3 棵沒(méi)人種;如果其中 2 人各種 4 棵,其
余的人各種 6 棵,這些樹(shù)苗正好種完 . 問(wèn)有多少少先隊(duì)員參加植樹(shù),一共種多少樹(shù)苗?
分析 這是一道較難的盈虧問(wèn)題,主要難在對(duì)第二個(gè)已知
8、條件的理解上:如果其中 2 人
各種 4 棵,其余的人各種 6 棵,就恰好種完 . 這組條件中包含著兩種種樹(shù)的情況 —— 2 人各
種 4 棵,其余的人各種 6 棵。如果我們把它統(tǒng)一成一種情況,讓每人都種 6 棵,那么,就可
以多種樹(shù)(6-4) X2 = 4 (棵).因此,原問(wèn)題就轉(zhuǎn)化為:如果每人各種 5棵樹(shù)苗,還有 3
棵沒(méi)人種;如果每人種 6 棵樹(shù)苗,還缺 4 棵 . 問(wèn)有多少少先隊(duì)員,一共種多少樹(shù)苗?
解:[3+ (6-4 )X2]+ (6-5) = 7 (人)
5X7+3=38 (棵)
或 6X7-4 = 38 (棵)
答:有 7 個(gè)少先隊(duì)員,一共種 38 棵樹(shù)。
例
9、 6 紅山小學(xué)學(xué)生乘汽車(chē)到香山春游 . 如果每車(chē)坐 65人,則有 5 人不能乘上車(chē);如果
每車(chē)多坐 5 人,恰多余了一輛車(chē),問(wèn)一共有幾輛汽車(chē),有多少學(xué)生?
分析每車(chē)多坐5人,實(shí)際是每車(chē)可坐 5+65=70 (人),恰好多余了一輛車(chē),也就是還
差一輛汽車(chē)的人,即 70 人 . 因而原問(wèn)題轉(zhuǎn)化為:如果每車(chē)坐 65 人,則多出 5 人無(wú)車(chē)乘坐;
如果每車(chē)坐 70 人,還少 70 人,求有多少人和多少輛車(chē)?
解:(5+5+65) +5=15 (輛)
65 X 15+5=980 (人)
或(5+ 65) X (15-1 ) =980 (人)
答:一共有 15 輛汽車(chē), 980 名學(xué)生。
10、
總份數(shù)=總差一個(gè)差
(1) 一盈一虧 : 總差 =盈 +虧
(2) 兩盈 : 總差 =大盈 - 小盈
(3) 兩虧 : 總差 =大虧 - 小虧
(4) 一盈一正好 : 總差 =盈
(5) 一虧一正好 : 總差 =虧
環(huán)保小組的同學(xué)上山植樹(shù),如果每人種 3 棵,則還剩 3 棵;如果每人種 4 棵,則
還差 2 棵。環(huán)保小組有多少人?一共植樹(shù)多少棵?
分析與解:這是一道典型的盈虧應(yīng)用題。盈,就是多余;虧,就是不足、少
的意思。比較兩種植樹(shù)方式,第一種多了 3 棵,第二種少了 2 棵,一多一少共相
差 3+ 2=5(棵)。顯然,相差 5 棵的原因是第二種植樹(shù)方式每人種的棵數(shù)比第
11、
一種多了 4-3=1 (棵)。根據(jù)“相差的總數(shù)+相差的每份數(shù)=份數(shù)”得出,環(huán)保 小組的人數(shù)是5+1=5(人),一共植樹(shù)3X5+3=18(棵),或4X5-2 = 18(棵),
從中得出: 解盈虧問(wèn)題, 要先比較 “ 盈 ” 與 “ 虧 ” 兩種情況, 求出兩種情況
下總數(shù)之間的差,像上題是一盈一虧,差=盈+虧;再找出出現(xiàn)這個(gè)差的原因是
每份數(shù)不同, 求出兩個(gè)每份數(shù)之間的差; 最后根據(jù) “ 差—— 差 ” 對(duì)應(yīng)求出份數(shù)以
及總數(shù)。
盈虧問(wèn)題還有另外兩種情況: 兩盈與兩不足。 有些題還要通過(guò)轉(zhuǎn)化, 先找出
“ 盈虧 ” 數(shù)。
例 1. 工程隊(duì)修一條路,如果每天修 150 米,則可以
12、提前 2 天完成任務(wù);如
果每天修 180 米,則可以提前 5 天完成任務(wù)。這條路全長(zhǎng)多少米?
分析與解: 這道題沒(méi)有直接給出 “ 盈虧 ” 數(shù), 但由題意可知, 第一種情況如
果再修2天,還可以修150X2 = 300 (米);第二種情況如果再修 5天,還可以 修180X5 = 900 (米)。這300米與900米就是兩個(gè)“盈”數(shù)。因此,可以把條 件轉(zhuǎn)化為:如果每天修 150 米,可以多修 300 米;如果每天修 180米,可以多修
900 米。顯然,這道題是 “ 兩盈 ” 類(lèi)盈虧問(wèn)題,相差的總數(shù)是( 900-300 )米,
相差的每份數(shù)是(180-150)米,所以計(jì)劃修的天數(shù)是(
13、)(900-300)+ (180-150) = 20(天),這條路全長(zhǎng) 150X (20-2) =2700 (米),或 180X (20-5) =2700 (米)。
例 2. 小強(qiáng)每天早晨 7 點(diǎn) 30分從家出發(fā)去上學(xué)。如果每分鐘走 60米,就會(huì)
遲到 5 分鐘;如果每分鐘走 75 米,就可以提前 2 分鐘到校。小強(qiáng)家距離學(xué)校有
多少米?(首屆創(chuàng)新杯中小學(xué)數(shù)學(xué)邀請(qǐng)賽決賽。五年級(jí)試題)
分析與解:由題意可知,第一種行走方式還差 60X5 = 300 (米),第二種
行走方式可以多走75X2= 150(米),所以小強(qiáng)去學(xué)校要走(300+150)+ (75-60) =30 (分鐘),小強(qiáng)家
14、距離學(xué)校有 60X (30+5) =2100 (米)。
例 3. 有紅、白球若干個(gè)。若每次拿出 1 個(gè)紅球和 1 個(gè)白球,拿到?jīng)]有紅球
時(shí),還剩下 50 個(gè)白球;若每次拿走 1 個(gè)紅球和 3 個(gè)白球,則拿到?jīng)]有白球時(shí),
紅球還剩下 50 個(gè)。那么這堆紅球、白球共有 個(gè)。( 2000 年小學(xué)數(shù)學(xué)
奧林匹克競(jìng)賽預(yù)賽試題。 A 卷)
分析與解: 從第二種拿球方式得知, 若每次拿走 1 個(gè)紅球和 3 個(gè)白球, 到紅
球拿完時(shí),白球缺3X50= 150 (個(gè))。這樣,就把“盈虧”數(shù)統(tǒng)一到了白球上。 根據(jù)“一盈一虧”問(wèn)題的解法得,拿球的次數(shù)是(50+150) + (3-1 ) =100(次), 即紅球的個(gè)數(shù)為100個(gè),所以這堆紅球、白球共有100X (1 + 1) +50= 250(個(gè))
5 歡迎下載 。
精品文檔
歡迎您的下載,
資料僅供套考!
致力為企業(yè)和個(gè)人提供合同協(xié)議, 策劃案計(jì)劃書(shū),學(xué)習(xí)資料等等
打造全網(wǎng)一站式需求
6歡迎下載