金版教程高考數(shù)學(xué) 文二輪復(fù)習(xí)講義:第二編 專題整合突破 專題二 函數(shù)與導(dǎo)數(shù) 第三講 導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用 Word版含解析
《金版教程高考數(shù)學(xué) 文二輪復(fù)習(xí)講義:第二編 專題整合突破 專題二 函數(shù)與導(dǎo)數(shù) 第三講 導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《金版教程高考數(shù)學(xué) 文二輪復(fù)習(xí)講義:第二編 專題整合突破 專題二 函數(shù)與導(dǎo)數(shù) 第三講 導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用 Word版含解析(23頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 第三講 導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用 必記公式] 1.基本初等函數(shù)的八個(gè)導(dǎo)數(shù)公式 原函數(shù) 導(dǎo)函數(shù) f(x)=C(C為常數(shù)) f′(x)=0 f(x)=xα(α∈R) f′(x)=αxα-1 f(x)=sinx f′(x)=cosx f(x)=cosx f′(x)=-sinx f(x)=ax(a>0,且a≠1) f′(x)=axln_a f(x)=ex f′(x)=ex f(x)=logax(a>0,且a≠1) f′(x)=logae= f(x)=ln x f′(x)= 2.導(dǎo)數(shù)四則運(yùn)算法則 (1)f(x)g(x)]′=f′(x)g′(x);
2、
(2)f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);
(3)′=(g(x)≠0).
重要概念]
1.切線的斜率
函數(shù)f(x)在x0處的導(dǎo)數(shù)是曲線f(x)在點(diǎn)P(x0,f(x0))處的切線的斜率,因此曲線f(x)在點(diǎn)P處的切線的斜率k=f′(x0),相應(yīng)的切線方程為y-f(x0)=f′(x0)(x-x0).
2.函數(shù)的單調(diào)性
在某個(gè)區(qū)間(a,b)內(nèi),如果f′(x)>0(f′(x)<0),那么函數(shù)y=f(x)在這個(gè)區(qū)間內(nèi)單調(diào)遞增(單調(diào)遞減).
3.函數(shù)的極值
設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,如果對(duì)x0附近所有的點(diǎn)x,都有f(x) 3、數(shù)的一個(gè)極大值,記作y極大值=f(x0);如果對(duì)x0附近的所有的點(diǎn)都有f(x)>f(x0),那么f(x0)是函數(shù)的一個(gè)極小值,記作y極小值=f(x0).極大值與極小值統(tǒng)稱為極值.
4.函數(shù)的最值
將函數(shù)y=f(x)在a,b]內(nèi)的各極值與端點(diǎn)處的函數(shù)值f(a),f(b)比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值.
失分警示]
1.判斷極值的條件掌握不清:利用導(dǎo)數(shù)判斷函數(shù)的極值時(shí),忽視“導(dǎo)數(shù)等于零,并且兩側(cè)導(dǎo)數(shù)的符號(hào)相反”這兩個(gè)條件同時(shí)成立.
2.混淆在點(diǎn)P處的切線和過(guò)點(diǎn)P的切線:前者點(diǎn)P為切點(diǎn),后者點(diǎn)P不一定為切點(diǎn),求解時(shí)應(yīng)先設(shè)出切點(diǎn)坐標(biāo).
3.關(guān)注函數(shù)的定義域:求函數(shù)的單調(diào)區(qū) 4、間及極(最)值應(yīng)先求定義域.
考點(diǎn) 導(dǎo)數(shù)的幾何意義
典例示法
典例1 (1)20xx山東高考]若函數(shù)y=f(x)的圖象上存在兩點(diǎn),使得函數(shù)的圖象在這兩點(diǎn)處的切線互相垂直,則稱y=f(x)具有T性質(zhì).下列函數(shù)中具有T性質(zhì)的是( )
A.y=sinx B.y=ln x
C.y=ex D.y=x3
解析] 設(shè)函數(shù)y=f(x)圖象上兩點(diǎn)的橫坐標(biāo)為x1,x2.由題意知只需函數(shù)y=f(x)滿足f′(x1)f′(x2)=-1(x1≠x2)即可.y=f(x)=sinx的導(dǎo)函數(shù)為f′(x)=cosx,f′(0)f′(π)=-1,故A滿足;y=f(x)=ln x的導(dǎo)函數(shù)為f′(x 5、)=,f′(x1)f′(x2)=>0,故B不滿足;y=f(x)=ex的導(dǎo)函數(shù)為f′(x)=ex,f′(x1)f′(x2)=ex1+x2>0,故C不滿足;y=f(x)=x3的導(dǎo)函數(shù)為f′(x)=3x2,f′(x1)f′(x2)=9xx≥0,故D不滿足.故選A.
答案] A
(2)20xx陜西高考]設(shè)曲線y=ex在點(diǎn)(0,1)處的切線與曲線y=(x>0)上點(diǎn)P處的切線垂直,則P的坐標(biāo)為_(kāi)_______.
解析] y′=ex,則y=ex在點(diǎn)(0,1)處的切線的斜率k切=1,又曲線y=(x>0)上點(diǎn)P處的切線與y=ex在點(diǎn)(0,1)處的切線垂直,所以y=(x>0)在點(diǎn)P處的切線的斜率為-1,設(shè)P 6、(a,b),則曲線y=(x>0)上點(diǎn)P處的切線的斜率為y′|x=a=-a-2=-1,可得a=1,又P(a,b)在y=上,所以b=1,故P(1,1).
答案] (1,1)
1.求曲線y=f(x)的切線方程的三種類型及方法
(1)已知切點(diǎn)P(x0,y0),求y=f(x)過(guò)點(diǎn)P的切線方程:
求出切線的斜率f′(x0),由點(diǎn)斜式寫出方程.
(2)已知切線的斜率為k,求y=f(x)的切線方程:
設(shè)切點(diǎn)P(x0,y0),通過(guò)方程k=f′(x0)解得x0,再由點(diǎn)斜式寫出方程.
(3)已知切線上一點(diǎn)(非切點(diǎn)),求y=f(x)的切線方程:
設(shè)切點(diǎn)P(x0,y0),利用導(dǎo)數(shù)求得切線斜率f′(x 7、0),然后由斜率公式求得切線斜率,列方程(組)解得x0,再由點(diǎn)斜式或兩點(diǎn)式寫出方程.
2.利用切線(或方程)與其他曲線的關(guān)系求參數(shù)
已知過(guò)某點(diǎn)切線方程(斜率)或其與某線平行、垂直,利用導(dǎo)數(shù)的幾何意義、切點(diǎn)坐標(biāo)、切線斜率之間的關(guān)系構(gòu)建方程(組)或函數(shù)求解.
提醒:求曲線的切線方程時(shí),務(wù)必分清在點(diǎn)P處的切線還是過(guò)點(diǎn)P的切線,前者點(diǎn)P為切點(diǎn),后者點(diǎn)P不一定為切點(diǎn),求解時(shí)應(yīng)先求出切點(diǎn)坐標(biāo).
針對(duì)訓(xùn)練
1.20xx重慶巴蜀中學(xué)模擬]已知曲線y=在點(diǎn)P(2,4)處的切線與直線l平行且距離為2,則直線l的方程為( )
A.2x+y+2=0
B.2x+y+2=0或2x+y-18=0
C. 8、2x-y-18=0
D.2x-y+2=0或2x-y-18=0
答案 B
解析 y′==-,y′|x=2=-=-2,因此k1=-2,設(shè)直線l方程為y=-2x+b,即2x+y-b=0,由題意得=2,解得b=18或b=-2,所以直線l的方程為2x+y-18=0或2x+y+2=0.故選B.
2.20xx江蘇高考]在平面直角坐標(biāo)系xOy中,若曲線y=ax2+(a,b為常數(shù))過(guò)點(diǎn)P(2,-5),且該曲線在點(diǎn)P處的切線與直線7x+2y+3=0平行,則a+b的值是________.
答案?。?
解析 ∵y=ax2+,∴y′=2ax-,
由題意可得
解得∴a+b=-3.
考點(diǎn) 利用導(dǎo)數(shù)研究函數(shù) 9、的單調(diào)性
典例示法
題型1 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(單調(diào)區(qū)間)
典例2 20xx重慶高考]已知函數(shù)f(x)=ax3+x2(a∈R)在x=-處取得極值.
(1)確定a的值;
(2)若g(x)=f(x)ex,討論g(x)的單調(diào)性.
解] (1)對(duì)f(x)求導(dǎo)得f′(x)=3ax2+2x,
因?yàn)閒(x)在x=-處取得極值,所以f′=0,
即3a+2=-=0,解得a=.
(2)由(1)得g(x)=ex,
故g′(x)=ex+ex
=ex=x(x+1)(x+4)ex.
令g′(x)=0,解得x=0,x=-1或x=-4.
當(dāng)x<-4時(shí),g′(x)<0,故g(x)為減函數(shù); 10、
當(dāng)-4 11、解] (1)f′(x)=2mx-1+=,即2mx2-x+1<0在(0,+∞)上有解.
當(dāng)m≤0時(shí)顯然成立;
當(dāng)m>0時(shí),由于函數(shù)y=2mx2-x+1的圖象的對(duì)稱軸x=>0,故需且只需Δ>0,即1-8m>0,故0 12、.
則g′(x)=2mx-1+-2m==
.
當(dāng)m=時(shí),g′(x)≥0,又g(x)不是常數(shù)函數(shù),故g(x)在(0,+∞)上單調(diào)遞增.
∴函數(shù)g(x)有且只有一個(gè)零點(diǎn)x=1,滿足題意.
當(dāng)0 13、∴g>0,故在上,函數(shù)g(x)又有一個(gè)零點(diǎn),不符合題意.
綜上所述,m=.
1.導(dǎo)數(shù)與單調(diào)性之間的關(guān)系
(1)導(dǎo)數(shù)大(小)于0的區(qū)間是函數(shù)的單調(diào)遞增(減)區(qū)間.
(2)函數(shù)f(x)在D上單調(diào)遞增??x∈D,f′(x)≥0且f′(x)在區(qū)間D的任何子區(qū)間內(nèi)都不恒為零;
函數(shù)f(x)在D上單調(diào)遞減??x∈D,f′(x)≤0且f′(x)在區(qū)間D的任何子區(qū)間內(nèi)都不恒為零.
2.根據(jù)函數(shù)的單調(diào)性求參數(shù)取值范圍的思路
(1)求f′(x).
(2)將單調(diào)性轉(zhuǎn)化為導(dǎo)數(shù)f′(x)在該區(qū)間上滿足的不等式恒成立問(wèn)題求解.
考點(diǎn) 利用導(dǎo)數(shù)研究函數(shù)的極值與最值 14、
典例示法
題型1 求函數(shù)的極值(最值)
典例4 20xx合肥質(zhì)檢]已知函數(shù)f(x)=e1-x(2ax-a2)(其中a≠0).
(1)若函數(shù)f(x)在(2,+∞)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)設(shè)函數(shù)f(x)的最大值為g(a),當(dāng)a>0時(shí),求g(a)的最大值.
解] (1)由f(x)=e1-x(2ax-a2),
得f′(x)=(e1-x)′(2ax-a2)+2ae1-x=e′(2ax-a2)+2ae1-x=-e1-x(2ax-a2)+2ae1-x=-e1-x(2ax-a2-2a)=0,又a≠0,故x=1+,
當(dāng)a>0時(shí),f(x)在上為增函數(shù),在上為減函數(shù),∴1+≤2 15、,即a≤2,
∴00時(shí),f(x)max=f=2ae
即g(a)=2ae.
則g′(a)=(2-a)e=0,得a=2,
∴g(a)在(0,2)上為增函數(shù),在(2,+∞)上為減函數(shù),
∴g(a)max=g(2)=.
題型2 知極值的個(gè)數(shù)求參數(shù)范圍
典例5 20xx沈陽(yáng)質(zhì)檢]已知函數(shù)f(x)=xln x-x2-x+a(a∈R)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求a的取值范圍;
(2)記兩個(gè)極值點(diǎn)為x1,x2,且x1 16、
解] (1)依題,函數(shù)f(x)的定義域?yàn)?0,+∞),
所以方程f′(x)=0在(0,+∞)上有兩個(gè)不同的根,
即方程ln x-ax=0在(0,+∞)上有兩個(gè)不同的根.
解法一:可以轉(zhuǎn)化為函數(shù)y=ln x與函數(shù)y=ax的圖象在(0,+∞)上有兩個(gè)不同的交點(diǎn),如圖.
可見(jiàn),若令過(guò)原點(diǎn)且與函數(shù)y=ln x圖象相切的直線斜率為k,只需0
17、′(x)>0,
當(dāng)x>e時(shí),g′(x)<0,
所以g(x)在(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減.從而g(x)極大值=g(e)=.
又g(x)有且只有一個(gè)零點(diǎn)是1,且在x→0時(shí),g(x)→-∞,在x→+∞時(shí),g(x)→0,
所以g(x)的草圖如圖所示,
可見(jiàn),要想函數(shù)g(x)=與函數(shù)y=a的圖象在(0,+∞)上有兩個(gè)不同交點(diǎn),只需00),
若a≤0,可見(jiàn)g′(x)>0在(0,+∞)上恒成立,所以g(x)在(0,+∞)上單調(diào)遞增,此時(shí)g(x)不可能有
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 110中國(guó)人民警察節(jié)(筑牢忠誠(chéng)警魂感受別樣警彩)
- 2025正字當(dāng)頭廉字入心爭(zhēng)當(dāng)公安隊(duì)伍鐵軍
- XX國(guó)企干部警示教育片觀后感筑牢信仰之基堅(jiān)守廉潔底線
- 2025做擔(dān)當(dāng)時(shí)代大任的中國(guó)青年P(guān)PT青年思想教育微黨課
- 2025新年工作部署會(huì)圍繞六個(gè)干字提要求
- XX地區(qū)中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 支部書記上黨課筑牢清廉信念為高質(zhì)量發(fā)展?fàn)I造風(fēng)清氣正的環(huán)境
- 冬季消防安全知識(shí)培訓(xùn)冬季用電防火安全
- 2025加強(qiáng)政治引領(lǐng)(政治引領(lǐng)是現(xiàn)代政黨的重要功能)
- 主播直播培訓(xùn)直播技巧與方法
- 2025六廉六進(jìn)持續(xù)涵養(yǎng)良好政治生態(tài)
- 員工職業(yè)生涯規(guī)劃方案制定個(gè)人職業(yè)生涯規(guī)劃
- 2024年XX地區(qū)黨建引領(lǐng)鄉(xiāng)村振興工作總結(jié)
- XX中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 幼兒園期末家長(zhǎng)會(huì)長(zhǎng)長(zhǎng)的路慢慢地走