《高考數(shù)學一輪復習總教案31 導數(shù)的應用一》由會員分享,可在線閱讀,更多相關《高考數(shù)學一輪復習總教案31 導數(shù)的應用一(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、3.1導數(shù)的應用(一)
典例精析
題型一 求函數(shù)f(x)的單調(diào)區(qū)間
【例1】已知函數(shù)f(x)=x2-ax-aln(x-1)(a∈R),求函數(shù)f(x)的單調(diào)區(qū)間.
【解析】函數(shù)f(x)=x2-ax-aln(x-1)的定義域是(1,+∞).
f′(x)=2x-a-=,
①若a≤0,則≤1,f′(x)=>0在(1,+∞)上恒成立,所以a≤0時,f(x)的增區(qū)間為(1,+∞).
②若a>0,則>1,
故當x∈(1,]時,f′(x)=≤0;
當x∈[,+∞)時,f′(x)=≥0,
所以a>0時,f(x)的減區(qū)間為(1,],f(x)的增區(qū)間為[,+∞).
【點撥】在定義域x>1下,為
2、了判定f′(x)符號,必須討論實數(shù)與0及1的大小,分類討論是解本題的關鍵.
【變式訓練1】已知函數(shù)f(x)=x2+ln x-ax在(0,1)上是增函數(shù),求a的取值范圍.
【解析】因為f′(x)=2x+-a,f(x)在(0,1)上是增函數(shù),
所以2x+-a≥0在(0,1)上恒成立,
即a≤2x+恒成立.
又2x+≥2(當且僅當x=時,取等號).
所以a≤2,
故a的取值范圍為(-∞,2].
【點撥】當f(x)在區(qū)間(a,b)上是增函數(shù)時?f′(x)≥0在(a,b)上恒成立;同樣,當函數(shù)f(x)在區(qū)間(a,b)上為減函數(shù)時?f′(x)≤0在(a,b)上恒成立.然后就要根據(jù)不等式恒成
3、立的條件來求參數(shù)的取值范圍了.
題型二 求函數(shù)的極值
【例2】已知f(x)=ax3+bx2+cx(a≠0)在x=±1時取得極值,且f(1)=-1.
(1)試求常數(shù)a,b,c的值;
(2)試判斷x=±1是函數(shù)的極小值點還是極大值點,并說明理由.
【解析】(1)f′(x)=3ax2+2bx+c.
因為x=±1是函數(shù)f(x)的極值點,
所以x=±1是方程f′(x)=0,即3ax2+2bx+c=0的兩根.
由根與系數(shù)的關系,得
又f(1)=-1,所以a+b+c=-1.③
由①②③解得a=,b=0,c=-.
(2)由(1)得f(x)=x3-x,
所以當f′(x)=x2->0時,有
4、x<-1或x>1;
當f′(x)=x2-<0時,有-1<x<1.
所以函數(shù)f(x)=x3-x在(-∞,-1)和(1,+∞)上是增函數(shù),在(-1,1)上是減函數(shù).
所以當x=-1時,函數(shù)取得極大值f(-1)=1;當x=1時,函數(shù)取得極小值f(1)=-1.
【點撥】求函數(shù)的極值應先求導數(shù).對于多項式函數(shù)f(x)來講, f(x)在點x=x0處取極值的必要條件是f′(x)=0.但是, 當x0滿足f′(x0)=0時, f(x)在點x=x0處卻未必取得極值,只有在x0的兩側f(x)的導數(shù)異號時,x0才是f(x)的極值點.并且如果f′(x)在x0兩側滿足“左正右負”,則x0是f(x)的極大值點,f(
5、x0)是極大值;如果f′(x)在x0兩側滿足“左負右正”,則x0是f(x)的極小值點,f(x0)是極小值.
【變式訓練2】定義在R上的函數(shù)y=f(x),滿足f(3-x)=f(x),(x-)f′(x)<0,若x1<x2,且x1+x2>3,則有( )
A.f(x1)<f(x2)B.f(x1)>f(x2)
C.f(x1)=f(x2)D.不確定
【解析】由f(3-x)=f(x)可得f[3-(x+)]=f(x+),即f(-x)=f(x+),所以函數(shù)f(x)的圖象關于x=對稱.又因為(x-)f′(x)<0,所以當x>時,函數(shù)f(x)單調(diào)遞減,當x<時,函數(shù)f(x)單調(diào)遞增.當=時,f(x1)=f
6、(x2),因為x1+x2>3,所以>,相當于x1,x2的中點向右偏離對稱軸,所以f(x1)>f(x2).故選B.
題型三 求函數(shù)的最值
【例3】 求函數(shù)f(x)=ln(1+x)-x2在區(qū)間[0,2]上的最大值和最小值.
【解析】f′(x)=-x,令-x=0,化簡為x2+x-2=0,解得x1=-2或x2=1,其中x1=-2舍去.
又由f′(x)=-x>0,且x∈[0,2],得知函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,1),同理, 得知函數(shù)f(x)的單調(diào)遞減區(qū)間是(1,2),所以f(1)=ln 2-為函數(shù)f(x)的極大值.又因為f(0)=0,f(2)=ln 3-1>0,f(1)>f(2),所以,
7、f(0)=0為函數(shù)f(x)在[0,2]上的最小值,f(1)=ln 2-為函數(shù)f(x)在[0,2]上的最大值.
【點撥】求函數(shù)f(x)在某閉區(qū)間[a,b]上的最值,首先需求函數(shù)f(x)在開區(qū)間(a,b)內(nèi)的極值,然后,將f(x)的各個極值與f(x)在閉區(qū)間上的端點的函數(shù)值f(a)、f(b)比較,才能得出函數(shù)f(x)在[a,b]上的最值.
【變式訓練3】(2019江蘇)f(x)=ax3-3x+1對x∈[-1,1]總有f(x)≥0成立,則a= .
【解析】若x=0,則無論a為何值,f(x)≥0恒成立.
當x∈(0,1]時,f(x)≥0可以化為a≥-,
設g(x)=-,則g′(x)=,
8、
x∈(0,)時,g′(x)>0,x∈(,1]時,g′(x)<0.
因此g(x)max=g()=4,所以a≥4.
當x∈[-1,0)時,f(x)≥0可以化為
a≤-,此時g′(x)=>0,
g(x)min=g(-1)=4,所以a≤4.
綜上可知,a=4.
總結提高
1.求函數(shù)單調(diào)區(qū)間的步驟是:
(1)確定函數(shù)f(x)的定義域D;
(2)求導數(shù)f′(x);
(3)根據(jù)f′(x)>0,且x∈D,求得函數(shù)f(x)的單調(diào)遞增區(qū)間;根據(jù)f′(x)<0,且x∈D,求得函數(shù)f(x)的單調(diào)遞減區(qū)間.
2.求函數(shù)極值的步驟是:
(1)求導數(shù)f′(x);
(2)求方程f′(x)=0的根;
(3)判斷f′(x)在方程根左右的值的符號,確定f(x)在這個根處取極大值還是取極小值.
3.求函數(shù)最值的步驟是:
先求f(x)在(a,b)內(nèi)的極值;再將f(x)的各極值與端點處的函數(shù)值f(a)、f(b)比較,其中最大的一個是最大值,最小的一個是最小值.
內(nèi)容總結