《高中數(shù)學(xué) 第三章 基本初等函數(shù)(Ⅰ)3.2.2 對數(shù)函數(shù)(一)課件 新人教B版必修1》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第三章 基本初等函數(shù)(Ⅰ)3.2.2 對數(shù)函數(shù)(一)課件 新人教B版必修1(47頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、3.2.2對數(shù)函數(shù)(一)第三章3.2對數(shù)與對數(shù)函數(shù)學(xué)習(xí)目標(biāo)1.理解對數(shù)函數(shù)的概念.2.掌握對數(shù)函數(shù)的性質(zhì).3.了解對數(shù)函數(shù)在生產(chǎn)實際中的簡單應(yīng)用.題型探究問題導(dǎo)學(xué)內(nèi)容索引當(dāng)堂訓(xùn)練問題導(dǎo)學(xué)問題導(dǎo)學(xué)思考知識點一對數(shù)函數(shù)的概念已知函數(shù)y2x,那么反過來,x是否為關(guān)于y的函數(shù)?答案答案答案由于y2x是單調(diào)函數(shù),所以對于任意y(0,),都有唯一確定的x與之對應(yīng),故x也是關(guān)于y的函數(shù),其函數(shù)關(guān)系式是xlog2y,此處y(0,). 叫做對數(shù)函數(shù),其中x是自變量,函數(shù)的定義域是 .梳理梳理函數(shù)ylogax(a0,且a1)(0,)思考知識點二對數(shù)函數(shù)的圖象與性質(zhì)ylogax化為指數(shù)式是xay.你能用指數(shù)函數(shù)單調(diào)
2、性推導(dǎo)出對數(shù)函數(shù)單調(diào)性嗎?答案答案答案當(dāng)a1時,若0 x1x2,則a a ,解指數(shù)不等式,得y1y2從而ylogax在(0,)上為增函數(shù).當(dāng)0a1時,同理可得ylogax在(0,)上為減函數(shù).y1y2定義ylogax (a0,且a1)底數(shù)a10a1圖象定義域_梳理梳理類似地,我們可以借助指數(shù)函數(shù)圖象和性質(zhì)得到對數(shù)函數(shù)圖象和性質(zhì)(0,)值域_單調(diào)性在(0,)上是增函數(shù)在(0,)上是減函數(shù)共點性圖象過點 ,即loga10函數(shù)值特點x(0,1)時,y ;x1,)時,y_x(0,1)時,y ;x1,)時,y_對稱性函數(shù)ylogax與ylog x的圖象關(guān)于 對稱(1,0)(,0)1a0,)(0,)(,0
3、 x軸R題型探究題型探究解答類型一對數(shù)函數(shù)的概念判斷一個函數(shù)是否為對數(shù)函數(shù)的方法一個函數(shù)是對數(shù)函數(shù)必須是形如ylogax(a0,且a1)的形式,即必須滿足以下條件:系數(shù)為1;底數(shù)為大于0且不等于1的常數(shù);對數(shù)的真數(shù)僅有自變量x.反思與感悟跟蹤訓(xùn)練跟蹤訓(xùn)練1判斷下列函數(shù)是不是對數(shù)函數(shù)?并說明理由.(1)ylogax2(a0,且a1);(2)ylog2x1;(3)ylogxa(x0,且x1);(4)ylog5x.解答解解(1)中真數(shù)不是自變量x,不是對數(shù)函數(shù).(2)中對數(shù)式后減1,不是對數(shù)函數(shù).(3)中底數(shù)是自變量x,而非常數(shù)a,不是對數(shù)函數(shù).(4)為對數(shù)函數(shù).例例2求下列函數(shù)的定義域.(1)yl
4、oga(3x)loga(3x);類型二與對數(shù)函數(shù)有關(guān)的定義域問題解答函數(shù)的定義域是x|3x0,得4x1642,由指數(shù)函數(shù)的單調(diào)性得x2,函數(shù)ylog2(164x)的定義域為x|x3.解答2.求函數(shù)yloga(x3)(x3)的定義域,相比引申探究1,定義域有何變化?解得x3.函數(shù)yloga(x3)(x3)的定義域為x|x3.相比引申探究1,函數(shù)yloga(x3)(x3)的定義域多了(,3)這個區(qū)間,原因是對于yloga(x3)(x3),要使對數(shù)有意義,只需(x3)與(x3)同號,而對于yloga(x3)loga(x3),要使對數(shù)有意義,必須(x3)與(x3)同時大于0.求含對數(shù)式的函數(shù)定義域關(guān)鍵
5、是真數(shù)大于0,底數(shù)大于0且不為1.如需對函數(shù)式變形,需注意真數(shù)底數(shù)的取值范圍是否改變.反思與感悟解答跟蹤訓(xùn)練跟蹤訓(xùn)練2求下列函數(shù)的定義域.故所求函數(shù)的定義域為(3,2)2,).解答(2)ylog(x1)(164x);所以1x2,且x0,故所求函數(shù)的定義域為x|1x1,所以它在(0,)上是增函數(shù),又3.48.5,于是log23.4log28.5.(2)log0.31.8,log0.32.7;解答解解考察對數(shù)函數(shù)ylog0.3x,因為它的底數(shù)00.3log0.32.7.(3)loga5.1,loga5.9(a0,且a1).解答解解當(dāng)a1時,ylogax在(0,)上是增函數(shù),又5.15.9,于是lo
6、ga5.1loga5.9;當(dāng)0aloga5.9.綜上,當(dāng)a1時,loga5.1loga5.9,當(dāng)0a1時,loga5.1loga5.9.比較兩個同底數(shù)的對數(shù)大小,首先要根據(jù)對數(shù)底數(shù)來判斷對數(shù)函數(shù)的增減性;然后比較真數(shù)大小,再利用對數(shù)函數(shù)的增減性判斷兩對數(shù)值的大小.對于底數(shù)以字母形式出現(xiàn)的,需要對底數(shù)a進(jìn)行討論.對于不同底的對數(shù),可以估算范圍,如log22log23log24,即1log230,3x11.ylog2x在(0,)上單調(diào)遞增,log2(3x1)log210.即f(x)的值域為(0,).答案解析在函數(shù)三要素中,值域從屬于定義域和對應(yīng)關(guān)系.故求ylogaf(x)型函數(shù)的值域必先求定義域,
7、進(jìn)而確定f(x)的范圍,再利用對數(shù)函數(shù)ylogax的單調(diào)性求出logaf(x)的取值范圍.反思與感悟 跟蹤訓(xùn)練跟蹤訓(xùn)練4函數(shù)y 的值域為A.(0,3) B.0,3C.(,3 D.0,)答案解析x1時,log2xlog210.命題角度命題角度1畫與對數(shù)函數(shù)有關(guān)的函數(shù)圖象畫與對數(shù)函數(shù)有關(guān)的函數(shù)圖象例例5畫出函數(shù)ylg|x1|的圖象.類型四對數(shù)函數(shù)的圖象解答解解(1)先畫出函數(shù)ylg x的圖象(如圖).(2)再畫出函數(shù)ylg|x|的圖象(如圖).(3)最后畫出函數(shù)ylg|x1|的圖象(如圖).現(xiàn)在畫圖象很少單純描點,大多是以基本初等函數(shù)為原料加工,所以一方面要掌握一些常見的平移、對稱變換的結(jié)論,另一
8、方面要關(guān)注定義域、值域、單調(diào)性、關(guān)鍵點.反思與感悟跟蹤訓(xùn)練跟蹤訓(xùn)練5畫出函數(shù)y|lg(x1)|的圖象.解答解解(1)先畫出函數(shù)ylg x的圖象(如圖).(2)再畫出函數(shù)ylg(x1)的圖象(如圖).(3)再畫出函數(shù)y|lg(x1)|的圖象(如圖).命題角度命題角度2與對數(shù)函數(shù)有關(guān)的圖象變換與對數(shù)函數(shù)有關(guān)的圖象變換例例6函數(shù)f(x)4loga(x1)(a0,a1)的圖象過一個定點,則這個定點的坐標(biāo)是_.答案解析解析解析因為函數(shù)yloga(x1)的圖象過定點(2,0),所以函數(shù)f(x)4loga(x1)的圖象過定點(2,4).(2,4)反思與感悟 跟蹤訓(xùn)練跟蹤訓(xùn)練6已知函數(shù)yloga(xc)(a,
9、c為常數(shù),其中a0,a1)的圖象如圖,則下列結(jié)論成立的是A.a1,c1B.a1,0c1C.0a1D.0a1,0c1答案解析解析解析由對數(shù)函數(shù)的圖象和性質(zhì)及函數(shù)圖象的平移變換知0a1,0c0,且a1)過定點P,則點P的坐標(biāo)是_.答案23451(1,3)規(guī)律與方法1.含有對數(shù)符號“l(fā)og”的函數(shù)不一定是對數(shù)函數(shù).判斷一個函數(shù)是否為對數(shù)函數(shù),不僅要含有對數(shù)符號“l(fā)og”,還要符合對數(shù)函數(shù)的概念,即形如ylogax(a0,且a1)的形式.如:y2log2x,ylog5 都不是對數(shù)函數(shù),可稱其為對數(shù)型函數(shù).2.研究ylogaf(x)的性質(zhì)如定義域、值域、比較大小,均需依托對數(shù)函數(shù)的相應(yīng)性質(zhì).3.研究與對數(shù)函數(shù)圖象有關(guān)的問題,以對數(shù)函數(shù)圖象為基礎(chǔ),加以平移、伸縮、對稱或截取一部分.本課結(jié)束