新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第8章 平面解析幾何 第6節(jié) 拋物線學(xué)案 文 北師大版
《新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第8章 平面解析幾何 第6節(jié) 拋物線學(xué)案 文 北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第8章 平面解析幾何 第6節(jié) 拋物線學(xué)案 文 北師大版(8頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 第六節(jié) 拋物線 [考綱傳真] 1.了解拋物線的實(shí)際背影,了解拋物線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用.2.了解拋物線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道其簡單的幾何性質(zhì)(范圍、對(duì)稱性、頂點(diǎn)、離心率、準(zhǔn)線方程).3.理解數(shù)形結(jié)合的思想.4.了解拋物線的簡單應(yīng)用. (對(duì)應(yīng)學(xué)生用書第123頁) [基礎(chǔ)知識(shí)填充] 1.拋物線的概念 平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線l(l不經(jīng)過點(diǎn)F)距離相等的點(diǎn)的集合叫做拋物線.點(diǎn)F叫做拋物線的焦點(diǎn),直線l叫做拋物線的準(zhǔn)線. 2.拋物線的標(biāo)準(zhǔn)方程與幾何性質(zhì) 標(biāo)準(zhǔn)方程 y2=2px (p>0) y2=-2px (p>0) x2
2、=2py (p>0) x2=-2py (p>0) p的幾何意義:焦點(diǎn)F到準(zhǔn)線l的距離 圖形 頂點(diǎn) O(0,0) 對(duì)稱軸 y=0 x=0 焦點(diǎn) F F F F 離心率 e=1 準(zhǔn)線方程 x=- x= y=- y= 范圍 x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R 焦半徑|PF| x0+ -x0+ y0+ -y0+ [知識(shí)拓展] 1.拋物線y2=2px(p>0)上一點(diǎn)P(x0,y0)到焦點(diǎn)F的距離|PF|=x0+,也稱為拋物線的焦半徑. 2.y2=ax的焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為x=-.
3、 3.設(shè)AB是過拋物線y2=2px(p>0)焦點(diǎn)F的弦, 若A(x1,y1),B(x2,y2),則 (1)x1x2=,y1y2=-p2. (2)弦長|AB|=x1+x2+p=(α為弦AB的傾斜角). (3)以弦AB為直徑的圓與準(zhǔn)線相切. (4)通徑:過焦點(diǎn)垂直于對(duì)稱軸的弦,長等于2p,通徑是過焦點(diǎn)最短的弦. [基本能力自測] 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯(cuò)誤的打“×”) (1)平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線l的距離相等的點(diǎn)的集合一定是拋物線.( ) (2)方程y=ax2(a≠0)表示的曲線是焦點(diǎn)在x軸上的拋物線,且其焦點(diǎn)坐標(biāo)是,準(zhǔn)線方
4、程是x=-.( ) (3)拋物線既是中心對(duì)稱圖形,又是軸對(duì)稱圖形.( ) (4)AB為拋物線y2=2px(p>0)的過焦點(diǎn)F的弦,若A(x1,y1),B(x2,y2),則x1x2=,y1y2=-p2,弦長|AB|=x1+x2+p.( ) [答案] (1)× (2)× (3)× (4)√ 2.(教材改編)若拋物線y=4x2上的一點(diǎn)M到焦點(diǎn)的距離為1,則點(diǎn)M的縱坐標(biāo)是( ) A. B. C. D.0 B [M到準(zhǔn)線的距離等于M到焦點(diǎn)的距離,又準(zhǔn)線方程為y=-,設(shè)M(x,y),則y+=1,∴y=.] 3.拋物線y=x2的準(zhǔn)線方程是( )
5、 A.y=-1 B.y=-2 C.x=-1 D.x=-2 A [∵y=x2,∴x2=4y,∴準(zhǔn)線方程為y=-1.] 4.(20xx·大同模擬)已知拋物線y2=2px(p>0)的準(zhǔn)線經(jīng)過點(diǎn)(-1,1),則該拋物線焦點(diǎn)坐標(biāo)為( ) A.(-1,0) B.(1,0) C.(0,-1) D.(0,1) B [拋物線y2=2px(p>0)的準(zhǔn)線為x=-且過點(diǎn)(-1,1),故-=-1,解得p=2,所以拋物線的焦點(diǎn)坐標(biāo)為(1,0).] 5.(20xx·浙江高考)若拋物線y2=4x上的點(diǎn)M到焦點(diǎn)的距離為10,則M到y(tǒng)軸的距離是________. 9 [設(shè)點(diǎn)M的橫坐標(biāo)為x0,則點(diǎn)
6、M到準(zhǔn)線x=-1的距離為x0+1,由拋物線的定義知x0+1=10,∴x0=9, ∴點(diǎn)M到y(tǒng)軸的距離為9.] (對(duì)應(yīng)學(xué)生用書第124頁) 拋物線的定義及應(yīng)用 (1)(20xx·全國卷Ⅰ)已知拋物線C:y2=x的焦點(diǎn)為F,點(diǎn)A(x0,y0)是C上一點(diǎn),|AF|=x0,則x0=( ) A.1 B.2 C.4 D.8 (2)已知拋物線y2=4x,過焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),過A,B分別作y軸的垂線,垂足分別為C,D,則|AC|+|BD|的最小值為__________. 【導(dǎo)學(xué)號(hào):00090304】 (1)A (2)2 [(1)由y2
7、=x,知2p=1,即p=, 因此焦點(diǎn)F,準(zhǔn)線l的方程為x=-. 設(shè)點(diǎn)A(x0,y0)到準(zhǔn)線l的距離為d,則由拋物線的定義可知d=|AF|. 從而x0+=x0,解得x0=1. (2)由y2=4x,知p=2,焦點(diǎn)F(1,0),準(zhǔn)線x=-1. 根據(jù)拋物線的定義,|AF|=|AC|+1,|BF|=|BD|+1. 因此|AC|+|BD|=|AF|+|BF|-2=|AB|-2. 所以|AC|+|BD|取到最小值,當(dāng)且僅當(dāng)|AB|取得最小值, 又|AB|=2p=4為最小值. 故|AC|+|BD|的最小值為4-2=2.] [規(guī)律方法] 1.凡涉及拋物線上的點(diǎn)到焦點(diǎn)距離
8、,一般運(yùn)用定義轉(zhuǎn)化為到準(zhǔn)線的距離處理.如本例充分運(yùn)用拋物線定義實(shí)施轉(zhuǎn)化,使解答簡捷、明快. 2.若P(x0,y0)為拋物線y2=2px(p>0)上一點(diǎn),由定義易得|PF|=x0+;若過焦點(diǎn)的弦AB的端點(diǎn)坐標(biāo)為A(x1,y1),B(x2,y2),則弦長為|AB|=x1+x2+p,x1+x2可由根與系數(shù)的關(guān)系整體求出. [變式訓(xùn)練1] (1)設(shè)P是拋物線y2=4x上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)A(-1,1)的距離與點(diǎn)P到直線x=-1的距離之和的最小值為__________. (2)若拋物線y2=2x的焦點(diǎn)是F,點(diǎn)P是拋物線上的動(dòng)點(diǎn),又有點(diǎn)A(3,2),則|PA|+|PF|取最小值時(shí)點(diǎn)P的坐標(biāo)為
9、________. (1) (2)(2,2)[(1)如圖,易知拋物線的焦點(diǎn)為F(1,0),準(zhǔn)線是x=-1,由拋物線的定義知:點(diǎn)P到直線x=-1的距離等于點(diǎn)P到F的距離.于是,問題轉(zhuǎn)化為在拋物線上求一點(diǎn)P,使點(diǎn)P到點(diǎn)A(-1,1)的距離與點(diǎn)P到F(1,0)的距離之和最?。? 連接AF交拋物線于點(diǎn)P,此時(shí)最小值為 |AF|==. (2)將x=3代入拋物線方程y2=2x,得y=±. ∵>2,∴A在拋物線內(nèi)部,如圖. 設(shè)拋物線上點(diǎn)P到準(zhǔn)線l:x=-的距離為d,由定義知|PA|+|PF|=|PA|+d,當(dāng)PA⊥l時(shí),|PA|+d最小,最小值為,此時(shí)P點(diǎn)縱坐標(biāo)為2,代入y2=
10、2x,得x=2,∴點(diǎn)P的坐標(biāo)為(2,2).] 拋物線的標(biāo)準(zhǔn)方程與幾何性質(zhì) (1)點(diǎn)M(5,3)到拋物線y=ax2的準(zhǔn)線的距離為6,那么拋物線的標(biāo)準(zhǔn)方程是( ) A.x2=y(tǒng) B.x2=y(tǒng)或x2=-y C.x2=-y D.x2=12y或x2=-36y (2)設(shè)F為拋物線C:y2=4x的焦點(diǎn),曲線y=(k>0)與C交于點(diǎn)P,PF⊥x軸,則k=( ) A. B.1 C. D.2 (1)D (2)D [(1)將y=ax2化為x2=y(tǒng). 當(dāng)a>0時(shí),準(zhǔn)線y=-,則3+=6,∴a=. 當(dāng)a<0時(shí),準(zhǔn)線y=-,則=6,∴a=-. ∴拋物線方程為x2=12y或
11、x2=-36y. (2)由拋物線C:y2=4x知p=2. ∴焦點(diǎn)F(1,0). 又曲線y=(k>0)與曲線C交于點(diǎn)P,且PF⊥x軸. ∴P(1,2), 將點(diǎn)P(1,2)代入y=,得k=2] [規(guī)律方法] 1.求拋物線的標(biāo)準(zhǔn)方程的方法: (1)求拋物線的標(biāo)準(zhǔn)方程常用待定系數(shù)法,因?yàn)槲粗獢?shù)只有p,所以只需一個(gè)條件確定p值即可. (2)拋物線方程有四種標(biāo)準(zhǔn)形式,因此求拋物線方程時(shí),需先定位,再定量. 2.由拋物線的方程可以確定拋物線的開口方向、焦點(diǎn)位置、焦點(diǎn)到準(zhǔn)線的距離,從而進(jìn)一步確定拋物線的焦點(diǎn)坐標(biāo)及準(zhǔn)線方程. [變式訓(xùn)練2] (1)(20xx·鄭州模擬)拋物
12、線y2=2px(p>0)的焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),M為拋物線上一點(diǎn),且|MF|=4|OF|,△MFO的面積為4,則拋物線的方程為 ( ) 【導(dǎo)學(xué)號(hào):00090305】 A.y2=6x B.y2=8x C.y2=16x D.y2= (20xx·西安模擬)過拋物線y2=4x的焦點(diǎn)F的直線交該拋物線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).若|AF|=3,則△AOB的面積為________. (1)B (2) [(1)設(shè)M(x,y),因?yàn)閨OF|=,|MF|=4|OF|,所以|MF|=2p, 由拋物線定義知x+=2p,所以x=p, 所以y=±p. 又△MFO的面積為4, 所以××
13、p=4,解得p=4(p=-4舍去). 所以拋物線的方程為y2=8x. (2)如圖,由題意知,拋物線的焦點(diǎn)F的坐標(biāo)為(1,0),又|AF|=3,由拋物線定義知,點(diǎn)A到準(zhǔn)線x=-1的距離為3,所以點(diǎn)A的橫坐標(biāo)為2,將x=2代入y2=4x得y2=8,由圖知點(diǎn)A的縱坐標(biāo)為y=2,所以A(2,2),所以直線AF的方程為y=2(x-1), 聯(lián)立直線與拋物線的方程 解得或由圖知B, 所以S△AOB=×1×|yA-yB|=.] 直線與拋物線的位置關(guān)系 角度1 直線與拋物線的交點(diǎn)問題 (20xx·全國卷Ⅰ)在直角坐標(biāo)系xOy中,直線l:y=t(t≠0)交y軸于點(diǎn)M,交拋物線C:y
14、2=2px(p>0)于點(diǎn)P,M關(guān)于點(diǎn)P的對(duì)稱點(diǎn)為N,連接ON并延長交C于點(diǎn)H. (1)求; (2)除H以外,直線MH與C是否有其他公共點(diǎn)?說明理由. [解] (1)如圖,由已知得M(0,t),P. 又N為M關(guān)于點(diǎn)P的對(duì)稱點(diǎn),故N, 2分 故直線ON的方程為y=x, 將其代入y2=2px,整理得px2-2t2x=0, 解得x1=0,x2=.因此H. 所以N為OH的中點(diǎn),即=2. 5分 (2)直線MH與C除H以外沒有其他公共點(diǎn).理由如下: 直線MH的方程為y-t=x,即x=(y-t). 8分 代入y2=2px得y2-4ty+4t2=0,解得
15、y1=y(tǒng)2=2t, 即直線MH與C只有一個(gè)公共點(diǎn), 所以除H以外,直線MH與C沒有其他公共點(diǎn). 12分 [規(guī)律方法] 1.(1)本題求解的關(guān)鍵是求出點(diǎn)N,H的坐標(biāo).(2)第(2)問將直線MH的方程與拋物線C的方程聯(lián)立,根據(jù)方程組的解的個(gè)數(shù)進(jìn)行判斷. 2.(1)判斷直線與圓錐曲線的交點(diǎn)個(gè)數(shù)時(shí),可直接求解相應(yīng)方程組得到交點(diǎn)坐標(biāo),也可利用消元后的一元二次方程的判別式來確定,需注意利用判別式的前提是二次項(xiàng)系數(shù)不為0.(2)解題時(shí)注意應(yīng)用根與系數(shù)的關(guān)系及設(shè)而不求、整體代換的技巧. 角度2 與拋物線弦長或中點(diǎn)有關(guān)的問題 (20xx·泰安模擬)已知拋物線C:y2=2px(p>0)的焦
16、點(diǎn)為F,拋物線C與直線l1:y=-x的一個(gè)交點(diǎn)的橫坐標(biāo)為8. (1)求拋物線C的方程; (2)不過原點(diǎn)的直線l2與l1的垂直,且與拋物線交于不同的兩點(diǎn)A,B,若線段AB的中點(diǎn)為P,且|OP|=|PB|,求△FAB的面積. [解] (1)易知直線與拋物線的交點(diǎn)坐標(biāo)為(8,-8), 2分 ∴(-8)2=2p×8,∴2p=8,∴拋物線方程為y2=8x. 5分 (2)直線l2與l1垂直,故可設(shè)直線l2:x=y(tǒng)+m,A(x1,y1),B(x2,y2),且直線l2與x軸的交點(diǎn)為M. 6分 由得y2-8y-8m=0,Δ=64+32m>0,∴m>-2. y1+y2=8,y1y2=
17、-8m,∴x1x2==m2. 8分 由題意可知OA⊥OB, 即x1x2+y1y2=m2-8m=0, ∴m=8或m=0(舍),∴直線l2:x=y(tǒng)+8,M(8,0). 10分 故S△FAB=S△FMB+S△FMA=·|FM|·|y1-y2| =3=24. 12分 [規(guī)律方法] 1.拋物線的弦長問題,要注意直線是否過拋物線的焦點(diǎn),若過拋物線的焦點(diǎn),可直接使用公式|AB|=x1+x2+p,若不過焦點(diǎn),則必須用一般弦長公式. 2.涉及拋物線的弦長、中點(diǎn)、距離等相關(guān)問題時(shí),一般利用根與系數(shù)的關(guān)系采用“設(shè)而不求”“整體代入”等方法. 3.涉及弦的中點(diǎn)、斜率時(shí),一般用“點(diǎn)差法”求解.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 110中國人民警察節(jié)(筑牢忠誠警魂感受別樣警彩)
- 2025正字當(dāng)頭廉字入心爭當(dāng)公安隊(duì)伍鐵軍
- XX國企干部警示教育片觀后感筑牢信仰之基堅(jiān)守廉潔底線
- 2025做擔(dān)當(dāng)時(shí)代大任的中國青年P(guān)PT青年思想教育微黨課
- 2025新年工作部署會(huì)圍繞六個(gè)干字提要求
- XX地區(qū)中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 支部書記上黨課筑牢清廉信念為高質(zhì)量發(fā)展?fàn)I造風(fēng)清氣正的環(huán)境
- 冬季消防安全知識(shí)培訓(xùn)冬季用電防火安全
- 2025加強(qiáng)政治引領(lǐng)(政治引領(lǐng)是現(xiàn)代政黨的重要功能)
- 主播直播培訓(xùn)直播技巧與方法
- 2025六廉六進(jìn)持續(xù)涵養(yǎng)良好政治生態(tài)
- 員工職業(yè)生涯規(guī)劃方案制定個(gè)人職業(yè)生涯規(guī)劃
- 2024年XX地區(qū)黨建引領(lǐng)鄉(xiāng)村振興工作總結(jié)
- XX中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 幼兒園期末家長會(huì)長長的路慢慢地走