5、 設(shè)t=x2-2x-3,則y=logt.
由t>0解得x<-1或x>3,
故函數(shù)的定義域?yàn)?-∞,-1)∪(3,+∞).
∴t=x2-2x-3=(x-1)2-4在(-∞,-1)上為減函數(shù),
在(3,+∞)上為增函數(shù).而函數(shù)y=logt為關(guān)于t的減函數(shù),所以函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,-1).
答案 (-∞,-1)
10.已知表中的對(duì)數(shù)值有且只有一個(gè)是錯(cuò)誤的.
x
3
5
6
8
9
lg x
2a-b
a+c-1
1+a-b-c
3(1-a-c)
2(2a-b)
試將錯(cuò)誤的對(duì)數(shù)值加以改正為_(kāi)_______.
解析 由2a-b=lg 3,得lg 9=
6、2lg 3=2(2a-b),從而lg 3和lg 9正確,假設(shè)lg 5=a+c-1錯(cuò)誤,由
得所以lg 5=1-lg 2=a+c.
因此lg 5=a+c-1錯(cuò)誤,正確結(jié)論是lg 5=a+c.
答案 lg 5=a+c
二、解答題
11.已知函數(shù)f(x)=loga(3-ax)(a>0,且a≠1).
(1)當(dāng)x∈[0,2]時(shí),函數(shù)f(x)恒有意義,求實(shí)數(shù)a的取值范圍;
(2)是否存在這樣的實(shí)數(shù)a,使得函數(shù)f(x)在區(qū)間[1,2]上為減函數(shù),并且最大值為1,如果存在,試求出a的值;如果不存在,請(qǐng)說(shuō)明理由.
解 (1)由題設(shè)知3-ax>0對(duì)一切x∈[0,2]恒成立,又a>0且a≠1,故
7、g(x)=3-ax在[0,2]上為減函數(shù),
從而g(2)=3-2a>0,所以a<,
所以a的取值范圍為(0,1)∪.
(2)假設(shè)存在這樣的實(shí)數(shù)a,由題設(shè)知f(1)=1,
即loga(3-a)=1,得a=,此時(shí)f(x)=log,
當(dāng)x=2時(shí),f(x)沒(méi)有意義,故這樣的實(shí)數(shù)a不存在.
12.已知函數(shù)f(x)=3-2log2x,g(x)=log2x.
(1)當(dāng)x∈[1,4]時(shí),求函數(shù)h(x)=[f(x)+1]·g(x)的值域;
(2)如果對(duì)任意的x∈[1,4],不等式f(x2)·f()>k·g(x)恒成立,求實(shí)數(shù)k的取值范圍.
解 (1)h(x)=(4-2log2x)·log2x
8、=-2(log2x-1)2+2,
因?yàn)閤∈[1,4],所以log2x∈[0,2],
故函數(shù)h(x)的值域?yàn)閇0,2].
(2)由f(x2)·f()>k·g(x)得
(3-4log2x)(3-log2x)>k·log2x,
令t=log2x,因?yàn)閤∈[1,4],所以t=log2x∈[0,2],
所以(3-4t)(3-t)>k·t對(duì)一切t∈[0,2]恒成立,
①當(dāng)t=0時(shí),k∈R;
②當(dāng)t∈(0,2]時(shí),k<恒成立,即k<4t+-15,
因?yàn)?t+≥12,當(dāng)且僅當(dāng)4t=,即t=時(shí)取等號(hào),
所以4t+-15的最小值為-3,
綜上,k∈(-∞,-3).
13.已知函數(shù)f(x)=
9、loga(x+1)(a>1),若函數(shù)y=g(x)圖象上任意一點(diǎn)P
關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)Q的軌跡恰好是函數(shù)f(x)的圖象.[來(lái)源:]
(1)寫(xiě)出函數(shù)g(x)的解析式;
(2)當(dāng)x∈[0,1)時(shí)總有f(x)+g(x)≥m成立,求m的取值范圍.
解 (1)設(shè)P(x,y)為g(x)圖象上任意一點(diǎn),
則Q(-x,-y)是點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn),
∵Q(-x,-y)在f(x)的圖象上,
∴-y=loga(-x+1),
即y=g(x)=-loga(1-x).
(2)f(x)+g(x)≥m,即loga≥m.
設(shè)F(x)=loga,x∈[0,1),由題意知,
只要F(x)min≥m即可.
∵
10、F(x)在[0,1)上是增函數(shù),∴F(x)min=F(0)=0.
故m≤0即為所求.
14.已知函數(shù)f(x)=-x+log2.
(1)求f+f的值;
(2)當(dāng)x∈(-a,a],其中a∈(0,1),a是常數(shù)時(shí),函數(shù)f(x)是否存在最小值?若存在,求出f(x)的最小值;若不存在,請(qǐng)說(shuō)明理由.
解 (1)由f(x)+f(-x)=log2+log2=log21=0.
∴f+f=0.
(2)f(x)的定義域?yàn)?-1,1),
∵f(x)=-x+log2(-1+),
當(dāng)x1