8、域為{x.
(2)令u=,因為f(x)=logu為減函數(shù),故要使f(x)在(2,4)上是減函數(shù),只需u(x)==a+在(2,4)上單調(diào)遞增且為正.
故由得1≤a<2.
故實數(shù)a的取值范圍是[1,2).
[能力提升]
11.(20xx·湖北省七市(州)高三聯(lián)考)已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(-∞,0]上單調(diào)遞增,若實數(shù)a滿足f(2log3a)>f(-),則a的取值范圍是( )
A.(-∞,) B.(0,)
C.(,+∞) D.(1,)
[解析] ∵f(x)是定義在R上的偶函數(shù),且在區(qū)間(-∞,0]上單調(diào)遞增,∴f(x)在區(qū)間[0,+∞)上單調(diào)遞減.又f(-)=f(
9、),
∴f(2 log3a)>f().∵2 log3a >0,f(x)在區(qū)間[0,+∞)上單調(diào)遞減,∴0<2log3a
10、)已知函數(shù)f(x)=若|f(a)|≥2,則實數(shù)a的取值范圍是________.
[解析] 當(dāng)a≤0時,1-a≥1,21-a≥2,所以|f(a)|≥2成立;當(dāng)a>0時,由|f(a)|≥2可得|1-log2a|≥2,所以1-log2a≤-2或1-log2a≥2,解得01,b>1,則alnb的最大值為________.
[解析] 由題意知b=,則alnb=a=a(2-lna),令t=a(2-lna)(t>0),則lnt=lna(2-
11、lna)=-(lna)2+2lna=-(lna-1)2+1≤1,當(dāng)lna=1時,“=”成立,此時lnt=1,所以t=e,即alnb的最大值為e.
[答案] e
15.(20xx·山西運城期中)已知函數(shù)f(x)=(log2x-2)·.
(1)當(dāng)x∈[1,4]時,求該函數(shù)的值域;
(2)若f(x)≤mlog2x對x∈[4,16]恒成立,求m的取值范圍.
[解] (1)令t=log2x,t∈[0,2],
∴f(t)=(t-2)=(t-2)(t-1),
∴f(0)≥f(t)≥f,∴-≤f(t)≤1,
故該函數(shù)的值域為.
(2)同(1)令t=log2x,∵x∈[4,16],∴t∈[2
12、,4],
∴(t-2)(t-1)≤mt,∴t+-3≤2m恒成立.
令g(t)=t+,其在(,+∞)上單調(diào)遞增,
∴g(t)≤g(4)=,∴-3≤2m,∴m≥.
16.(20xx·瀘州二診)已知函數(shù)f(x)=lg(a>0)為奇函數(shù),函數(shù)g(x)=1+x+(b∈R).
(1)求函數(shù)f(x)的定義域;
(2)當(dāng)x∈時,關(guān)于x的不等式f(x)≤lgg(x)有解,求b的取值范圍.
[解] (1)由f(x)=lg(a>0)為奇函數(shù),得f(-x)+f(x)=0,
即lg+lg=lg=0,
所以=1,解得a=1(a=-1舍去),
故f(x)=lg,
所以f(x)的定義域是(-1,1).
13、
(2)不等式f(x)≤lgg(x)有解,等價于≤1+x+有解,即b≥x2+x在上有解,
故只需b≥(x2+x)min,
函數(shù)y=x2+x=2-在區(qū)間上單調(diào)遞增,
所以ymin=2+=,
所以b的取值范圍是.
[延伸拓展]
(20xx·東北三省四市一模)已知點(n,an),(n∈N*)在y=ex的圖象上,若滿足Tn=lna1+lna2+…+lnan>k時n的最小值為5,則k的取值范圍是( )
A.k<15 B.k<10
C.10≤k<15 D.10